K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

O B C A K I H M

a) Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\) suy ra tứ giác ABOC nội tiếp

b) Ta có tứ giác ABOC nội tiếp

\(\Rightarrow\widehat{BAO}=\widehat{BCO}\) (2 góc nội tiếp cùng chắn cung \(\stackrel\frown{OB}\))

c) Xét tứ giác KMHB có \(\widehat{BKH}+\widehat{MHB}=90^0+90^0=180^0\)

Suy ra tứ giác KMHB nội tiếp\(\Rightarrow\widehat{MKH}=\widehat{MBH}\)\(\widehat{KMH}+\widehat{KBH}=180^0\)

CMTT: tứ giác IMHC nội tiếp\(\Rightarrow\widehat{MHI}=\widehat{ICM}\)\(\widehat{IMH}+\widehat{ICH}=180^0\)

\(\widehat{MBH}=\widehat{MBC}=\widehat{ICM}\)( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung MC)

\(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{KMH}=\widehat{IMH}\)

Suy ra △MIH\(\sim\)△MHK(g-g)

d) Ta có △MIH\(\sim\)△MHK\(\Rightarrow\frac{MI}{MH}=\frac{MH}{MK}\Rightarrow MI.MK=MH^2\)

19 tháng 4 2019

\(\widehat{MKH}=\widehat{MCH}\)

c) Tam giác COA=tam giác BOA ( tự chứng minh)

=> \(\widehat{COA}=\widehat{BOA}\)(1)

Ta có: MK//OC ( cùng vuông AC)

     MH//OA ( cùng vuông BC)

=> \(\widehat{KMH}=\widehat{AOC}\)(2)

Tương tự chứng minh đc: \(\widehat{HMI}=\widehat{AOB}\)(3)

Từ 1, 2, 3 => \(\widehat{KMH}=\widehat{HMI}\)(4)

Tứ giác KMHC nội tiếp ( tự chứng minh)

=> \(\widehat{MKH}=\widehat{MCH}\)( cùng chắn cung MH) (5)

Tứ giác MIBH nội tiếp ( tự chứng minh)

=> \(\widehat{MHI}=\widehat{MBI}\) (cùng chắn cung MI)(6)

Mà \(\widehat{MCH}=\widehat{MBI}\)( cùng chắn cung MB của đường tròn (O)) (7)

Từ (5), (6), (7)

=> \(\widehat{MKH}=\widehat{MHI}\)(8)

Xét tam giác KMH và tam giác HMI có:

\(\widehat{KMH}=\widehat{HMI}\)(theo (4))

\(\widehat{MKH}=\widehat{MHI}\)( theo (8)

=> tam giác KMH đông dạng tam giác HMI

13 tháng 6 2018

A B C D O M N K H E F I J T P

a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.

Nên tứ giác ACBD là hình vuông.

Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900

=> Tứ giác ACMH nội tiếp đường tròn

Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450 

=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.

b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.

Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900

=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE

Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900

Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF

Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)

=> J là trung điểm của HM  => Đpcm.

c) Trên tia đối của tia DB lấy T sao cho DT=CM.

Gọi P là hình chiếu của A xuống đoạn MN.

Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT

mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900

=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)

=> ^AMN=^ATN (2 góc tương ứng)  hay ^AMP=^ATD

=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).

Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.

Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi

=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.

Vậy...

 ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 

Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!

  • Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 
  • Đang học tại: Trường THCS Lập Thạch
  • Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
  • Điểm hỏi đáp: 16SP, 0GP
  • Điểm hỏi đáp tuần này: 1SP, 0GP
  • Thống kê hỏi đáp
16 tháng 4 2017

1) Xét (o) có :

Tiếp tuyến AB (o) => góc OBA =90(theo tính chất tiếp tuyến của đường tròn)

Tiếp tuyến AC(O)=> góc OCA =90 (theo trên)

xét tứ giác ABOC có:

góc OBA+góc OCA =180 (cmt)

=> tứ giác ABOC là tứ giác nt (dhnb)

Mặt khác : MH vuông góc với BC (theo đề bài )=>góc BHM =90

MI vuông góc với AB (theo đề bài )=>góc BIM = 90

Xét tứ giác BIMH có:

góc BHM+BIM=180 (cmt)

=>tứ giác BIMH là tứ giác  nt

2) theo hệ thức lượng áp dụng vào tam giác HIK ta có :

MH^2=MI . MK

3)

CM góc thì mình không biết đâu nhé!

22 tháng 3 2021

ko biết dâu nha