1. Cho nửa đường tròn (O, R), điểm C nằm trên nửa đường tròn. Kẻ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho nửa đường tròn (O, R), điểm C nằm trên nửa đường tròn. Kẻ các tiếp tuyến Ax, By tại A và B của nửa đường tròn. OC cắt Ax tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt By tại F.

a) Chứng minh: AD. BF không đổi và DF là tiếp tuyến của (O).

b) AE cắt OC tại G, BC cắt OE tại H. Chứng minh: CH. CB = EG. EA và bằng giá trị không đổi.

c) Gọi I là tiếp điểm của DF với (O). IG cắt BC tại K, IH cắt AE tại L. Chứng minh: KL // CE và A, K, L, B cùng thuộc một đường tròn (đồng viên)

2. Cho nửa đường tròn (O, R), điểm C chạy trên đường tròn sao cho số đo cung AC không lớn hơn 90o. Kẻ các tiếp tuyến tại A và B của nửa đường tròn. OC cắt tiếp tuyến tại A tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt tiếp tuyến tại B tại F. Tiếp tuyến tại C của nửa đường tròn cắt tiếp tuyến tại A tại M, tiếp tuyến tại E của nửa đường tròn cắt tiếp tuyến tại A tại N. AE cắt BC tại J. Chứng minh:

a) DF tiếp xúc với (O) và M, J, N thẳng hàng.

b) Gọi I là tiếp điểm của DF với (O). Chứng minh: MJ. JN \(\le\) DI. IF

c) Tìm quỹ tích của điểm J khi C di động mà thỏa mãn các điều kiện trong giả thiết.

3. Cho nửa đường tròn (O, R), P là điểm chính giữa của cung AB, điểm C chạy trên phần tư đường tròn chứa điểm A (C khác A và P). Kẻ các tiếp tuyến tại A và B của nửa đường tròn. OC cắt tiếp tuyến tại A tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt tiếp tuyến tại B tại F.

a) Chứng minh: DF có đúng 1 điểm chung với (O).

b) Gọi I là điểm chung đó, AE cắt BC tại J, AE cắt OC tại G, BC cắt OE tại H. Chứng minh: ICGJ, IEHJ nội tiếp và CE vuông góc với IJ.

c) Gọi K và L là giao của đường tròn ngoại tiếp tứ giác ICGJ, IEHJ với CE. Chứng minh: GL. GI + HK. HI = GC2 + HE2 và tính diện tích lớn nhất của hình ICGJHE theo R.

d) Chứng minh: OG. OC + OH. OE \(\ge\) 2. OJ. OI. 

Cần các bạn giúp đỡ, đặc biệt là ý c, d của bài 3 ạ.

0
26 tháng 6 2017

Có cách dán ảnh rồi nè

3 tháng 10 2021

bạn god rick giải dài nhưng chưa chắc là đúng

a) Xét tứ giác AOMC có

ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối

ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)

hay ˆMAB=ˆOCDMAB^=OCD^

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^

Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù) 

mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)

và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)

nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800

⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900

mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)

nên ˆCOD=900COD^=900

Xét ΔCOD có ˆCOD=900COD^=900(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

ˆMAB=ˆOCDMAB^=OCD^(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)

hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.