Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có phương trình tương đương
\(x^2+4x+4=1-m\Leftrightarrow\left(x+2\right)^2=1-m\) có hai nghiệm phân biệt khi \(1-m>0\Leftrightarrow m< 1\)
Khi đó hai nghiệm sẽ là : \(\hept{\begin{cases}x=-2+\sqrt{1-m}\\x=-2-\sqrt{1-m}\end{cases}}\) hai nghiệm nhỏ hơn hoặc bằng 1 nên ta có :
\(-2-\sqrt{1-m}< -2+\sqrt{1-m}\le1\)\(\Leftrightarrow\sqrt{1-m}\le3\Leftrightarrow-8\le m\)
mà \(m\in\text{[-9,0)}\Rightarrow\text{ có 8 giá trị nguyên của m thỏa mãn đề bài}\)
số nghiệm của phtrinh -x2 - 4x = m + 3 chính là số giao điểm của parabol y = -x2 - 4x và đường thẳng y = m + 3
ở đây mình sẽ dùng phương pháp quan sát đồ thị nhé:D
nhìn vào đồ thị, để phtrinh -x2 - 4x = m + 3 có 2 nghiệm phân biệt nhỏ hơn hoặc bằng 1 thì parabol phải cắt đường thẳng tại 2 điểm phân biệt có hoành độ nhỏ hơn hoặc bằng 1 => \(4>m+3\ge-5\Leftrightarrow1>m\ge-8\)
lại có: m\(\in\)[-9; 0) => m \(\in\)[-8; 0] và m nguyên => m \(\in\)\(\left\{-8;-7;-6;...;-1\right\}\)
ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((
a:
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=-\dfrac{\left(-2\right)}{2\cdot1}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot3}{4\cdot1}=-\dfrac{4-12}{4}=2\end{matrix}\right.\)
=>Hàm số đồng biến khi x>1 và nghịch biến khi x<1
=>Trong khoảng (-1;1) thì khi x tăng thì y giảm và trong khoảng (1;2) thì khi x tăng thì y tăng
=>Khi x=1 thì f(x) min
=>\(y=1^2-2\cdot1+3=1-2+3=2\)
b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-2\right)}{2\cdot1}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot5}{4}=-\dfrac{4-20}{4}=-\dfrac{-16}{4}=4\end{matrix}\right.\)
=>Hàm số nghịch biến khi x<1 và đồng biến khi x>1
=>Trên khoảng [2;3] thì khi x tăng thì y tăng
Do đó: Khi x=2 thì y min và x=3 thì y max
Khi x=2 thì \(y=2^2-2\cdot2+5=5\)
Khi x=3 thì \(y=3^2-2\cdot3+5=9+5-6=8\)
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).