\(\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: sin DAC=0,8 nên cos DAC=0,6

=>AD/AC=3/5

=>AC=70mm=7cm

=>DC=5,6cm

\(DF=\dfrac{4.2\cdot5.6}{7}=3.36\left(cm\right)\)

sin AOD=sin DOF=DF/DO=3,36/3,5=24/25

b: Xét ΔOFD vuông tại F và ΔOEC vuông tại E có 

OD=OC

góc DOF=góc COE

Do đó: ΔOFD=ΔOEC

=>OF=OE

Vì OF/OA=OE/OB

nên FE//AB

=>FE//DC

OF=OE

OC=OD

=>FC=DE

=>FECD là hình thang cân

a) Xét ΔADC vuông tại D có 

\(\sin\widehat{DAC}=\dfrac{DC}{AC}\)

\(\Leftrightarrow\dfrac{DC}{AC}=\dfrac{4}{5}\)

nên \(DC=\dfrac{4}{5}AC\)

Áp dụng định lí Pytago vào ΔACD vuông tại D, ta được:

\(AC^2=AD^2+CD^2\)

\(\Leftrightarrow AC^2=42^2+\left(\dfrac{4}{5}AC\right)^2\)

\(\Leftrightarrow\dfrac{9}{25}AC^2=1764\)

\(\Leftrightarrow AC^2=4900\)

hay AC=70(cm)

Ta có: \(DC=\dfrac{4}{5}AC\)(cmt)

nên \(DC=\dfrac{4}{5}\cdot70=56\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DF là đường cao ứng với cạnh huyền AC, ta được:

\(DF\cdot AC=AD\cdot DC\)

\(\Leftrightarrow DF\cdot70=42\cdot56=2352\)

hay DF=33,6(cm)

Ta có: ABCD là hình chữ nhật(gt)

mà O là giao điểm của hai đường chéo AC và BD(gt)

nên \(DO=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(DO=\dfrac{70}{2}=35\left(cm\right)\)

Xét ΔDFO vuông tại F có 

\(\sin\widehat{DOF}=\dfrac{DF}{DO}=\dfrac{33.6}{35}=\dfrac{24}{25}\)

hay \(\sin\widehat{AOD}=\dfrac{24}{25}\)

b) Xét ΔDFO vuông tại F và ΔCEO vuông tại E có

OD=OC(cmt)

\(\widehat{FOD}=\widehat{EOC}\)(hai góc đối đỉnh)

Do đó: ΔDFO=ΔCEO(Cạnh huyền-góc nhọn)

Suy ra: OF=OE(hai cạnh tương ứng)

Xét ΔOAB có 

\(\dfrac{OF}{OA}=\dfrac{OE}{OB}\left(OF=OE;OA=OB\right)\)

nên FE//AB(Định lí Ta lét đảo)

mà AB//DC(gt)

nên FE//DC

Ta có: OE+OD=ED(O nằm giữa E và D)

OF+OC=FC(O nằm giữa F và C)

mà OE=OF(cmt)

và OD=OC(cmt)

nên ED=FC

Xét tứ giác CEFD có FE//CD(cmt)

nên CEFD là hình thang có hai đáy là FE và CD(Định nghĩa hình thang)

Hình thang CEFD(FE//CD) có ED=FC(cmt)

nên CEFD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét ΔDFO vuông tại F và ΔCEO vuông tại E có

OD=OC(cmt)

\(\widehat{FOD}=\widehat{EOC}\)(hai góc đối đỉnh)

Do đó: ΔDFO=ΔCEO(Cạnh huyền-góc nhọn)

Suy ra: OF=OE(hai cạnh tương ứng)

Xét ΔOAB có 

\(\dfrac{OF}{OA}=\dfrac{OE}{OB}\left(OF=OE;OA=OB\right)\)

nên FE//AB(Định lí Ta lét đảo)

mà AB//DC(gt)

nên FE//DC

Ta có: OE+OD=ED(O nằm giữa E và D)

OF+OC=FC(O nằm giữa F và C)

mà OE=OF(cmt)

và OD=OC(cmt)

nên ED=FC

Xét tứ giác CEFD có FE//CD(cmt)

nên CEFD là hình thang có hai đáy là FE và CD(Định nghĩa hình thang)

Hình thang CEFD(FE//CD) có ED=FC(cmt)

nên CEFD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

9 tháng 10 2014

toán hình phải vẽ mới giải được, lâu lắm

 

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

0