K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

AB/AC=2/3

nên HB/HC=4/9

=>HB=4/9HC

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>4/9HC2=36

=>HC=9(cm)

=>HB=4(cm)

\(AB=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

15 tháng 2 2019

Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên  E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .

Do đó  E P Q ^ + P C K ^ = 90 0 , nên  P K ⊥ A C .

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:

Vì $\frac{AB}{AC}=\frac{3}{4}$ nên đặt $AB=3a; AC=4a$ $(a>0$)

Áp dụng hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$

$\Rightarrow \frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{1}{16^2}$

$\Rightarrow \frac{25}{144a^2}=\frac{1}{16^2}$

$\Rightarrow a=\frac{20}{3}$

Áp dụng định lý pitago:

$HC=\sqrt{AC^2-AH^2}=\sqrt{(4a)^2-16^2}=\sqrt{(\frac{80}{3})^2-16^2}=\frac{64}{3}$ (cm)

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Hình vẽ:

19 tháng 6 2023

\(BC=BH+CH=25+144=169\left(cm\right)\)

Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH có:

\(AH^2=HB.HC=25.144\Rightarrow AH=\sqrt{3600}=60\left(cm\right)\)

\(AB^2=BH.BC=25.169=4225\Rightarrow AB=\sqrt{4225}=65\left(cm\right)\)

\(AC^2=CH.CB=144.169=24336\Rightarrow AC=\sqrt{24336}=156\left(cm\right)\)

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp

30 tháng 10 2021

Bài 4:

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=HB\cdot HC\)

a: vecto AB=(-7;1)

vecto AC=(1;-3)

vecto BC=(8;-4)

b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)

\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)

a: \(AH=\sqrt{BH\cdot CH}=6\left(cm\right)\)

\(AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{\sqrt{13}}\)

nên \(\widehat{B}=56^0\)

b: Xét ΔAHB vuông tại H và ΔCEH vuông tại E có 

\(\widehat{BAH}=\widehat{C}\)

Do đó: ΔAHB\(\sim\)ΔCEH

Suy ra: \(\dfrac{AH}{CE}=\dfrac{BH}{EH}\)

hay \(AH\cdot HE=CE\cdot BH\)