K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Trong mp(ABCD), Gọi giao của AC và BD là O

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà S thuộc (SAC) giao (SBD)

nên (SAC) giao (SBD)=SO

b:Trong mp(ABCD), Gọi giao của AB và CD là M

\(M\in AB\subset\left(SAB\right)\)

\(M\in CD\subset\left(SCD\right)\)

=>M thuộc (SAB) giao (SCD)

mà S thuộc (SAB) giao (SCD)

nên (SAB) giao (SCD)=SM

c: Trong mp(ABCD), gọi N là giao của AD với BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

21 tháng 11 2023

Trong mp(BCD), gọi M là giao điểm của KJ với DC

\(M\in KJ\subset\left(IJK\right)\)

\(M\in CD\subset\left(ACD\right)\)

Do đó: \(M\in\left(IJK\right)\cap\left(ACD\right)\left(1\right)\)

\(I\in AC\subset\left(ACD\right);I\in\left(IJK\right)\)

=>\(I\in\left(ACD\right)\cap\left(IJK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(IJK\right)\cap\left(ACD\right)=MI\)

Xét ΔCAB có

\(\dfrac{CI}{CA}=\dfrac{CJ}{CB}=\dfrac{1}{2}\)

nên IJ//AB

\(K\in BD\subset\left(ABD\right);K\in\left(IJK\right)\)

=>\(K\in\left(ABD\right)\cap\left(IJK\right)\)

Xét (ABD) và (IJK) có

\(K\in\left(ABD\right)\cap\left(IJK\right)\)

IJ//AB

Do đó: (ABD) giao (IJK)=xy, xy đi qua K và xy//IJ//AB

8 tháng 2 2021

undefined

8 tháng 2 2021

SN=32SB ?? :D 

21 tháng 11 2023

loading...  loading...  loading...  

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: Gọi K là giao của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: \(\left(SAD\right)\cap\left(SBC\right)=xy\), xy đi qua S và xy//AD//BC

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

=>\(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: \(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

=>(SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: \(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: (HKCD) giao (ABCD)=CD

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

c; AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC