Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với \(x\in\left[0;1\right]\) => x - 2 < 0 => |x - 2| = - (x -2)
Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)
Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m
Pt hoành độ giao điểm:
\(x^2+2mx+2m=2x+3\)
\(\Leftrightarrow x^2-2x-3+2m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+2m\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2m+3\end{matrix}\right.\)
Do \(-1< 2\) nên bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}-2m+3\ne-1\\-2m+3< 2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m\ne2\end{matrix}\right.\)
\(m\ne\pm1\)
ĐKXĐ: \(x\in\left[-2018;2018\right];x\ne0\)
Miền xác định của hàm là miền đối xứng
Để ĐTHS nhận Oty làm trục đối xứng \(\Leftrightarrow\) hàm chẵn
\(\Leftrightarrow\) Với mọi m ta phải có: \(f\left(-x\right)=f\left(x\right)\)
\(\Leftrightarrow\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\dfrac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\)
\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}=\left(-m^2-m+2\right)\sqrt{2018-x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-2=0\\-m^2-m+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=-2\end{matrix}\right.\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
a) Hệ số a là: a=1
\(f(0) = {0^2} - 4.0 + 3 = 3\)
\(f(1) = {1^2} - 4.1 + 3 = 0\)
\(f(2) = {2^2} - 4.2 + 3 = - 1\)
\(f(3) = {3^2} - 4.3 + 3 = 0\)
\(f(4) = {4^2} - 4.4 + 3 = 3\)
=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a
b) Nhìn vào đồ thị ta thấy
- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành
c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a
a) Hàm số \(y = - 3{x^2}\) là hàm số bậc hai.
\(y = - 3.{x^2} + 0.x + 0\)
Hệ số \(a = - 3,b = 0,c = 0\).
b) Hàm số \(y = 2x\left( {{x^2} - 6x + 1} \right)\)\( \Leftrightarrow y = 2{x^3} - 12{x^2} + 2x\) có số mũ cao nhất là 3 nên không là hàm số bậc hai.
c) Hàm số \(y = 4x\left( {2x - 5} \right)\)\( \Leftrightarrow y = 8{x^2} - 20x\) có số mũ cao nhất là 2 nên là hàm số bậc hai.
Hệ số \(a = 8,b = - 20,c = 0\)
(2): =>(4x^2-1)(x^2-6x+9)<=0
=>(4x^2-1)(x-3)^2<=0
TH1: (4x^2-1)(x-3)^2=0
=>x=3 hoặc \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
TH2: (4x^2-1)(x-3)^2<0
=>4x^2-1<0
=>-1/2<x<1/2