\(\frac{a}{b}=\frac{c}{d}\)

CMR: a,  \(\left(\frac{a-b}{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

Ta có : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có : \(\frac{a\cdot b}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)

Ta lại có : \((\frac{a-b}{c-d})^2=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2(k-1)}{d^2(k-1)}=\frac{b^2}{d^2}\)

Vậy : \((\frac{a-b}{c-d})^2=\frac{ab}{cd}\)

10 tháng 7 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

                                                                       đpcm

21 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\Leftrightarrow\frac{bkb}{dkd}=\left(\frac{bk-b}{dk-d}\right)^2\)

Xét VT \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(1\right)\)

Xét VP \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) -->Đpcm

21 tháng 8 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:
\(a=b.k\)

\(c=d.k\)

Theo bài ra ta có:
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\)   (1)

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left[\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\)   (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

\(\Rightarrowđpcm\)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

=>đpcm

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(=\frac{a}{d}=\frac{c}{b}=\frac{b}{c}\)

\(=\frac{a+c+b}{d+b+c}\)

\(\Rightarrow\frac{a}{d}=\frac{c}{b}=\frac{b}{c}=\left(\frac{a+b+c}{b+d+c}\right)^3\)

\(\Rightarrow\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

11 tháng 8 2016

Cho \(\frac{a}{2003}=\frac{a}{2004}=\frac{c}{2005}\)

Chứng minh rằng: 4(a - b)(b - c) = (c - a)\(^2\)

10 tháng 8 2016

đăng lại làm gì

31 tháng 5 2017

Áp đụng tính chất dãy tỷ số bằng nhau ta được

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

Ta lại có: 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

31 tháng 5 2017

Ta có:

+) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)

+) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(2)

Từ (1)(2)

\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)