K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)

Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)

Từ (1) và (2) => ĐPCM

b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => ĐPCM

12 tháng 11 2018

đi mà làm

12 tháng 10 2016

CÁC BẠN GIẢI DÙM VỚI. NĂN NỈ ĐÓ

3 tháng 4 2019

(a+b+c/b+c+d)^3=(a+b+c/b+c+d).(a+b+c/b+c+d).(a+b+c/b+c+d)=a/b.b/c.c/d

19 tháng 9 2015

(a-b/c-d)^2=(a-b)^2/(c-D)^2

                 =a^2-2ab+b^2/c^2-2cd+d^2

                  =a^2-2ab+b^2/a^2-2cd+b^2

                  =-2ab/-2cd=ab/cd

Bài 1Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)Chững minh c=0Bài 2Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)Chững minh a + b+ c+ d = 0Bài 3Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)Bài 4Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thứcBài...
Đọc tiếp

Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0

Bài 2

Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Chững minh a + b+ c+ d = 0

Bài 3

Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)

Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bài 4

Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)

Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức

Bài 5

Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)

Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)

Bài 6

Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)

Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)

Bài 7

Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)

Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức

Bài 8

Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)

a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)

b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)

0
9 tháng 11 2018

ta có (a+b-c/c)+2=(a-b+c/b)+2=(-a+b+c/a)+2

=>a+b-c+2c/c=a-b+c+2b/b=-a+b+c+2a/a

=>a+b+c/c=a+b+c/b=a+b+c/a     (1)

Trường hợp 1

Nếu a+b+c=0 => a+b=-c

                       => b+c=-a

                       =>  a+c=-b

M= (-c)(-a)(-a)/abc = -1

Trường hợp 2

Từ (1) =>(a+b+c). 1/c =(a+b+c). 1/b =(a+b+c). 1/a

=>1/a=1/b=1/c

Từ (1) =>3(a+b+c)/a+b+c=3

hay (a+b/c)+1=(a+c/b)+1=(b+c/a)=2

9 tháng 11 2018

Nguyễn Trọng Tâm Đạt làm sai một TH nhé =)

trường hợp 2

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{-a+b+c}{a}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào M ta có

\(M=\frac{\left(b+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}=\frac{2a.2a.2a}{aaa}=\frac{8.a^3}{a^3}=8\)

3 tháng 4 2019

????????

phải có tỉ số bằng nhau mới làm được chứ bạn?

vd cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)thì cm biểu thức trên 

bổ sung tớ sẽ làm cho

3 tháng 4 2019

gật \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)