K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(P=\dfrac{1-2\sqrt{a}+a}{1-\sqrt{a}}\cdot\dfrac{1+2\sqrt{a}+a}{1+\sqrt{a}}\) \(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\) \(=1-a\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

Để P>0 \(\Leftrightarrow1-a>0\) \(\Leftrightarrow a< 1\)

  Vậy \(0\le a< 1\)

18 tháng 5 2021

`a)P=((1-asqrta)/(1-sqrta)+sqrta).((1+asqrta)/(1+sqrta)-sqrta)`

`=(((1-sqrta)(a+sqrta+1))/(1-sqrta)+sqrta).(((1+sqrta)(a-sqrta+1))/(1+sqrta)-sqrta)`

`=(a+sqrta+1+sqrta)(a-sqrta+1-sqrta)`

`=(a+2sqrta+1)(a-2sqrta+1)`

`=(sqrta+1)^2(sqrta-1)^2`

`=(a-1)^2`

`b)a<7-4sqrt3`

`<=>(a-1)^2<(2-sqrt3)^2`

`<=>sqrt3-2<a-1<2-sqrt3`

`<=>sqrt3-1<a<3-sqrt3`

a: \(P=\dfrac{a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{1}=\sqrt{a}-1\)

b: Để P<0 thì căn a-1<0

=>căn a<1

=>0<a<1

29 tháng 12 2022

\(P=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\left(a>0;a\ne1\right)\)

\(a,P=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\)

\(=\left[\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\dfrac{\sqrt{a}+1}{a-1}\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-1}\)

\(=1:\dfrac{\sqrt{a}+1}{a-1}\)

\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+1}\)

\(=\sqrt{a}-1\)

\(b,P< 0\Rightarrow\sqrt{a}-1< 0\Leftrightarrow\sqrt{a}< 1\Leftrightarrow a< 1\)

Kết hợp điều kiện \(a>0;a\ne1\)

\(\Rightarrow0< a< 1\)

19 tháng 1 2022

a, x > 0 ; x khác 1 

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)

\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}=\dfrac{x-2}{\sqrt{x}}\)

b, Ta có : \(P=\dfrac{x-2}{\sqrt{x}}=1\Rightarrow x-2=\sqrt{x}\)

\(\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow\left(\sqrt{x}+1>0\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=4\)(tm) 

a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-2}{\sqrt{x}}\)

b: Để P=1 thì \(x-\sqrt{x}-2=0\)

hay x=4

17 tháng 1 2022

ĐKXĐ: \(x\ge0,x\ne1\)

a) \(P=\left[\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}-1}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)

\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\dfrac{x+1}{x+\sqrt{x}+1}=\dfrac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{1-\sqrt{x}}{x+\sqrt{x}+1}\)

\(P=\dfrac{1-\sqrt{x}}{x+\sqrt{x}+1}< 0\Leftrightarrow1-\sqrt{x}< 0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

17 tháng 1 2022

Em cảm ơn ạ

20 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a< >1\end{matrix}\right.\)

\(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}+1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{a-1}\)

\(=\dfrac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)}{\sqrt{a}}+\dfrac{3a+3\sqrt{a}-a-\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}+2a+2\sqrt{a}+2}{\sqrt{a}}=\dfrac{2\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)

b: \(P=\sqrt{a}+7\)

=>\(2\left(a+2\sqrt{a}+1\right)=a+7\sqrt{a}\)

=>\(2a+4\sqrt{a}+2-a-7\sqrt{a}=0\)

=>\(a-3\sqrt{a}+2=0\)

=>\(\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\)

=>\(\left[{}\begin{matrix}a=1\left(loại\right)\\a=4\left(nhận\right)\end{matrix}\right.\)

c: \(P-6=\dfrac{2\left(\sqrt{a}+1\right)^2-6\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2a+4\sqrt{a}+2-6\sqrt{a}}{\sqrt{a}}=\dfrac{2a-2\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\left(a-\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}\right)}{\sqrt{a}}=\dfrac{2\left[\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}{\sqrt{a}}>0\)

=>P>6

22 tháng 12 2020

Bài 1: 

a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)

mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-2>0\)

\(\Leftrightarrow\sqrt{a}>2\)

hay a>4

Kết hợp ĐKXĐ,ta được: a>4

Vậy: Để Q dương thì a>4