Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Lời giải:
Áp dụng BĐT AM-GM:
$4abc+4abc+\frac{1}{8a^2}+\frac{1}{8b^2}+\frac{1}{8c^2}\geq 5\sqrt[5]{\frac{1}{32}}=\frac{5}{2}(1)$
Áp dụng BĐT Cauchy_Schwarz:
$\frac{7}{8}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq \frac{7}{8}.\frac{9}{a^2+b^2+c^2}\geq \frac{7}{8}.\frac{9}{\frac{3}{4}}=\frac{21}{2}(2)$
Từ $(1);(2)\Rightarrow P\geq 13$
Vậy $P_{\min}=13$ khi $a=b=c=\frac{1}{2}$
Bài 1:
Đk:\(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=t\Rightarrow2x=t^2+1\)
\(pt\Leftrightarrow\left(t^2+1\right)^2-8\left(t^2+4\right)t=7-22\left(t^2+1\right)\)
\(\Leftrightarrow t^4-8t^3+24t^2-32t+16=0\)
\(\Leftrightarrow\left(t-2\right)^4=0\Leftrightarrow t=2\Leftrightarrow\sqrt{2x-1}=2\)
\(\Leftrightarrow2x-1=4\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\) (thỏa mãn)
Bài 2:
Cộng 2 vế với \(7x^2+23x+12\) ta được:
\(\left(x+2\right)^3+\left(x+2\right)=\left(7x^2+23x+12\right)+\sqrt[3]{7x^2+23x+12}\)
\(\Leftrightarrow\left(x+2\right)^3=7x^2+23x+12\)
\(\Leftrightarrow x^3+6x^2+12x+8=7x^2+23x+12\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=4\\x=\frac{\sqrt{5}-3}{2}\end{matrix}\right.\) (thỏa mãn)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow c^3+\left(a+b\right)^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ca-3bc-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ca-bc-ab\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Mà a, b ,c đôi một khác nhau nên \(a+b+c=0\)
Khi đó \(\frac{1}{a^2+b^2-c^2}=\frac{1}{a^2+b^2-\left(-a-b\right)^2}=-\frac{1}{2ab}\)
Tương tự \(\frac{1}{b^2+c^2-a^2}=-\frac{1}{2bc};\frac{1}{c^2+a^2-b^2}=-\frac{1}{2ca}\)
\(\Rightarrow A=-\left(\frac{1}{2ab}+\frac{1}{2bc}+\frac{1}{2ca}\right)=-\frac{a+b+c}{2abc}=0\)
\(\sqrt{x^2+4x+3m+1}=x+3\)
\(\Leftrightarrow x^2+4x+3m+1=\left(x+3\right)^2\)
\(\Leftrightarrow x^2+4x+3m+1=x^2+6x+9\)
\(\Leftrightarrow2x=3m-8\)
\(\Leftrightarrow x=\frac{3m-8}{2}\)
Với x=\(\frac{3m-8}{2}\Rightarrow\left(\frac{3m-8}{2}\right)^2+4\cdot\frac{3m-8}{2}+3m+1\ge0\)
\(\Leftrightarrow\frac{9m^2-48m+64}{4}+6m-16+3m+1\ge0\)
\(\Leftrightarrow9m^2-12m+4\ge0\)
\(\Leftrightarrow\left(3m-2\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra <=> \(3m-2=0\Leftrightarrow m=\frac{2}{3}\)
\(\Rightarrow a=2;b=3\)
\(\Rightarrow4a^2+3b^2+7=4\cdot2^2+3\cdot3^2+7=50\)
Câu 1 cần bổ sung thêm điều kiện $a,b,c$ là 3 cạnh của tam giác, tức là đảm bảo mẫu các phân thức vế trái luôn dương.
Nếu không, BĐT sai trong TH $(a,b,c)=(3,2,10)$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^4}{ab+ac-a^2}+\frac{b^4}{bc+ba-b^2}+\frac{c^4}{ac+bc-c^2}\geq \frac{(a^2+b^2+c^2)^2}{ab+ac-a^2+bc+ba-b^2+ca+cb-c^2}\)
\(=\frac{(a^2+b^2+c^2)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(1)\)
Mà theo BĐT AM-GM ta thấy: $ab+bc+ac\leq a^2+b^2+c^2$
$\Rightarrow 2(ab+bc+ac)-(a^2+b^2+c^2)\leq a^2+b^2+c^2(2)$
Từ $(1);(2)\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^2+b^2+c^2}=a^2+b^2+c^2$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
BĐT 1 sai ngay với \(a=\sqrt{0,1},b=\sqrt{0,2},c=\sqrt{2,7}\)
BĐT 2 tương đương với đi chứng minh \(a^4b^4+b^4c^4+c^4a^4\geq 3a^2b^2c^2\)
Áp dụng BĐT AM-GM: \(a^4b^4+b^4c^4\geq 2a^2b^4c^2\)
Tương tự \(b^4c^4+c^4a^4\geq 2b^2c^4a^2,a^4b^4+c^4a^4\geq 2a^4b^2c^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)
Do đó ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$
thì ra cái đầu sai nghĩ mãi ko ra, đại ca thông minh thật :v
Câu 1:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow ab+ac+bc=0\Rightarrow bc=-ab-ac\)
\(a^2+2bc=a^2+bc+bc=a^2+bc-ac-ab=\left(a-b\right)\left(a-c\right)\)
Tương tự: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\); \(c^2+2ab=\left(a-c\right)\left(b-c\right)\)
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(P=\frac{a^2\left(b-c\right)-b^2a+ac^2+b^2c-bc^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{a^2\left(b-c\right)-\left(ab+ac\right)\left(b-c\right)+bc\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(P=\frac{\left(b-c\right)\left(a^2-ab-ac+bc\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\frac{\left(b-c\right)\left(a-b\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Câu 2:
\(x=a+1\); \(y=4\left(a+1\right)^2+1=4x^2+1\); \(z=6\left(a+1\right)^2+1=6x^2+1\)
- Nếu \(x=2\Rightarrow z=25\) không phải nguyên tố (loại)
- Nếu \(x=3\Rightarrow z=55\) không phải nguyên tố (loại)
- Nếu \(x=5\Rightarrow\left\{{}\begin{matrix}y=101\\z=151\end{matrix}\right.\) là số nguyên tố \(\Rightarrow a=4\)
- Nếu \(x>5\) ta có các trường hợp:
+) \(x=5k+1\Rightarrow y=4\left(5k+1\right)^2+1=4\left(25k^2+10k\right)+5⋮5\) (loại)
+) \(x=5k+2\Rightarrow z=6\left(5k+2\right)^2+1=6\left(25k^2+20k\right)+25⋮25\) (loại)
+) \(x=5k+3\Rightarrow z=6\left(25k^2+30k\right)+55⋮5\) (loại)
+) \(x=5k+4\Rightarrow y=4\left(25k^2+40k\right)+65⋮5\) (loại)
Vậy \(a=4\) là số tự nhiên duy nhất thỏa điều kiện đề bài