Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a,Bạn tự vẽ
b,Phương trình hoành độ giao điểm của (d1) và (d2) là:
\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)
\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)
Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)
c,Đường thẳng (d3) có dạng: y = ax + b
Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)
Khi đó (d3) có dạng: y = -2x + b
Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)
Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)
Vậy (d3) có phương trình: y = -2x - 3
Câu 2:
\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)
\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)
\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)
\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)
\(\(\(=a-b\)\)\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(=\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\left(1\right)\)
Áp dụng BĐT AM-GM ta có: :
\(\frac{a}{a^2+b^2+c^2}+9a\left(a^2+b^2+c^2\right)\ge2\sqrt{9a^2}=6a\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a^2+b^2+c^2}+9b\left(a^2+b^2+c^2\right)\ge6b;\frac{c}{a^2+b^2+c^2}+9c\left(a^2+b^2+c^2\right)\ge6c\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge6\left(a+b+c\right)\)
Theo BĐT Cauchy-Schwarz thì:
\(9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\cdot\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)=3\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}\ge6-3=3\)
Và \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\ge\frac{9}{\frac{\left(a+b+c\right)^2}{3}}=27\)
Khi đó nhìn vào \(\left(1\right)\) thấy \(P\ge27+3=30\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
cho a>0, b>0, c>0, a+b+c\(\le\)1
tìm min của p=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
từ giả thiết, ta có \(\frac{a^2}{b}+\frac{b^2}{a}\le1\)
Mà \(\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\Rightarrow a+b\le1\)
Mà từ BĐT cô-si, ta luôn có \(\left(a+b\right)^3\ge4ab\left(a+b\right)\ge4\left(a^3+b^3\right)\left(a+b\right)\Rightarrow\frac{\left(a+b\right)^3}{4}\ge\left(a^3+b^3\right)\left(a+b\right)\)
Mà áp dụng BĐT Bu-nhi-a , ta có \(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)
=>\(\frac{\left(a+b\right)^3}{4}\ge\left(a^2+b^2\right)^2\Rightarrow\frac{1}{4}\ge\left(a^2+b^2\right)^2\Rightarrow a^2+b^2\le\frac{1}{2}\)
Mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\frac{1}{2}}=\frac{8}{5}\)
Dấu = xảy ra ,=> a=b=1/2
^_^
\(a^3+b^3\le ab\Leftrightarrow ab\left(a+b\right)\le ab\Leftrightarrow a+b\le1.\).Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}.\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\left(a+b\right)^2-2ab}\ge\frac{4}{2+1-\frac{1}{2}}\ge\frac{8}{5}.\)
Dấu bằng xảy ra khi a=b=1/2.
So easy =))
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(F=\frac{4}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\)
\(\ge\frac{\left(1+2\right)^2}{2ab+a^2+b^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge\frac{\left(1+2\right)^2}{\left(a+b\right)^2}+\frac{\frac{\frac{\left(\left(a+b\right)^2\right)^2}{2}}{2}}{2}\)
\(=\frac{9}{1}+\frac{\frac{\frac{1}{2}}{2}}{2}=9+\frac{1}{8}=\frac{73}{8}\)
Xảy ra khi \(a=b=\frac{1}{2}\)
Đề bị thiếu rồi. Đáng lẽ phải có a + b = ??? đấy nữa chứ.