\(\ge\)2ab với m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Cộng theo vế: \(a+c< b+d\)

\(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

\("="\Leftrightarrow a=b\)

18 tháng 4 2019

1.

ta có: a < b

=> a+c < b+c (1)

Lại có: c < d

c+b < d+b (2)

từ (1) và (2) => a+c < b+d

25 tháng 6 2019

17) \(\frac{10x^2-7x-5}{2x-3}\) là số nguyên khi 10x² - 7x - 5 \(⋮\) 2x - 3

Ta có: 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7

\(\Rightarrow\) 10x² - 7x - 5 \(⋮\) 2x - 3 khi và chỉ khi 7 chia hết cho 2x-3

\(\Rightarrow\) 2x - 3 \(\in\) Ư(7) \(\Leftrightarrow\) 2x - 3 = \(\left\{-1;1;-7;7\right\}\)
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là \(\left\{-2;1;2;5\right\}\)

25 tháng 6 2019

23) Cm rằng

a) a2+b2−2ab ≥0

Ta có: a2+b2−2ab = a2−2ab+b2 = (a - b)2 ≥ 0 (đpcm)

b)\(\frac{a^2+b^2}{2}\) ≥ ab

Ta có: (a-b)2 ≥0 vs mọi a,b

\(\Leftrightarrow\) a2−2ab+b2 ≥0

\(\Leftrightarrow\) a2+b2 ≥ 2ab

\(\Leftrightarrow\) \(\frac{a^2+b^2}{2}\) ≥ ab (đpcm)

c) a(a+2)<(a+1)2

Ta có: a(a+2)= a2+2a

(a+1)2 = a2 + 2a + 1

\(\Rightarrow\) a(a+2)<(a+1)2 (đpcm)

d) m2+n2+2 ≥ 2(m+n)

Ta có: (m-n)2 \(\ge\) 0

\(\Leftrightarrow\) m2- 2mn+n2 \(\ge\) 0

\(\Leftrightarrow\) m2+n2 \(\ge\) 2mn

\(\Leftrightarrow\) m2+n2+2 \(\ge\) 2mn+2

\(\Leftrightarrow\) m2+n2+2 ≥ 2(m+n) (đpcm)

e) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (với a>0, b>0)

Ta có: (a - b)2 ≥ 0

\(\Leftrightarrow\) a2−2ab+b2 ≥ 0

\(\Leftrightarrow\) a2+2ab - 4ab+b2 ≥ 0

\(\Leftrightarrow\) (a + b)2 - 4ab≥ 0

\(\Leftrightarrow\) (a + b)2 ≥ 4ab

\(\Leftrightarrow\) \(\frac{\left(a+b\right)^2}{ab}\) ≥ 4

\(\Leftrightarrow\) (a+b) ( \(\frac{a+b}{ab}\) ) ≥ 4

\(\Leftrightarrow\) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (vs a,b > 0) (đpcm)

13 tháng 4 2020

Do \(a\ge1,d\le50\left(and\right)c>b\left(c,b\in N\right)nên\left(c\ge b+1\right)\)thành thử

\(S=\frac{a}{b}+\frac{c}{d}\ge\frac{1}{b}+\frac{b+1}{50}=\frac{b^2+b+50}{50b}\)

zậy BĐT của đề ra đc CM 

dấu = xảy ra khi \(\hept{\begin{cases}a=1\\d=50\\c=b+1\end{cases}.}\)

ĐỂ tìm minS ta đặt

\(\frac{b^2+b+50}{50b}=\frac{b}{50}+\frac{1}{b}+\frac{1}{50}\)zà xét hàm số có biến số liên tục x 

\(f\left(x\right)=\frac{x}{50}+\frac{1}{x}+\frac{1}{50}\left(2\le x\le48\right)\)

\(f'\left(x\right)=\frac{1}{50}-\frac{1}{x^2}=\frac{x^2-50}{50x^2};f'\left(x\right)=0\hept{\begin{cases}x^2=50\\2\le x\le48\end{cases}\Leftrightarrow x=5\sqrt{2}}\)

Ta có bảng biến thiên 

x     2         \(5\sqrt{2}\)  48
f'(x)     -          0      +
f(x)\(\rightarrow\)minf(x )     )\(\rightarrow\)

chuyển zế biểu thức 

\(f\left(b\right)=\frac{b^2+b+50}{50b}\left(2\le b\le48,b\in N\right)\)

từ BBT suy ra b biến thiên từ 2 đến 7 , f(b) giảm rồi chuyển sang tăng khi b biến thiên  từ 8 đến 48 . suy ra minf(b) = min[f(7) ;f(8)]

ta có 

\(\hept{\begin{cases}f\left(7\right)=\frac{49+57}{350}=\frac{53}{175}\\f\left(8\right)=\frac{64+58}{400}=\frac{61}{200}>\frac{53}{175}\end{cases}}\)

zậy min S = 53/175 khi a=1 , b=7 , c=8 , d=50\

nguồn đại học học 2002 dự bị 5

1 tháng 4 2017

đề sai rồi bạn ơi, thử a=b=c=0,9 nó ra >2

22 tháng 1 2019

Dvvfvasdf

23 tháng 7 2016

ai giúp tôi vs

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn

NV
17 tháng 6 2020

a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

b/ \(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\) (hiển nhiên đúng)

d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(m=n=1\)

e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?