Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\overline{abc}⋮37\)
ta cần chững minh \(\overline{bac}⋮37\)
và \(\overline{cab}⋮37\)
Vì \(\overline{abc}⋮37\)
nên đặt \(\overline{abc}=37.k\)
với \(k\in N\)
\(\Rightarrow100a+\overline{bc}=37.k\)
\(\Rightarrow\overline{bc}=37.k-100.a\)
Ta có: \(\overline{bac}=10.\overline{bc}+a=10\left(37.k-100.a\right)+a=370.k-999.a⋮37\)
Ta có: \(\overline{abc}+\overline{bca}+\overline{cab}=111\left(a+b+c\right)⋮37\)
Mà \(\overline{abc}⋮37\)
và \(\overline{bca}⋮37\)
nên \(\overline{cab}⋮37\)
Vậy: Nếu hoán vị vòng quanh các chữ số, ta cũng được hai số nữa chia hết cho 37
Bài này ban đầu mình cũng không biết làm nên mới hỏi. Bây giờ mình làm được rồi. Không biết có đúng không? Nếu các bạn thấy đúng thì k cho mình nhé! Thank you!!!
Gọi số bị chia cho 7 là a .
Giả sử a là 777 , thì a chia hết cho 7 ; 7 + 7 + 7 = 21 chia hết cho 7 .
Nếu bạn nào thấy đúng , nhớ k cho mình nha !
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath
Số tự nhiên có 3 chữ số mà chữ số hàng chục bằng chữ số hàng đơn vị là: \(\overline{abb}\)( a khác 0, a,b,c là số tự nhiên có 1 chữ số)
\(\overline{abb}=a.100+b.10+b=a.100+b.11=98a+2a+7b+4b\)
\(=\left(98a+7b\right)+\left(2a+4b\right)=7\left(14a+7\right)+2\left(a+2b\right)\)
Theo bài ra : \(\overline{abb}\) chia hết cho 7 mà \(7\left(14a+7\right)⋮7\)
=> \(2\left(a+2b\right)⋮7\)=> \(a+2b⋮7\)=> a + b + b chia hết cho 7
Vậy tổng các chữ số \(\overline{abb}\) chia hết cho 7.
Giả sử : a+b+b=a+2b chia hết cho 7
Xét:
abb = 100a+11b = 98a+7b+2a+4b = 7(14a+b)+2(a+2b)
Mà 7.(14a+b) chia hết cho 7
và 2(a+2b) chia hết cho 7(vì a+2b chia hết cho 7)
=> abb chia hết cho 7 ( thỏa mãn đk đề bài )
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath