Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
cau 1 :
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)
a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))
Cạnh huyền AE chung
=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)
b/ Ta có \(\Delta ACE\)= \(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)
Gọi M là giao điểm của AE và CK.
\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)
\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))
Cạnh AM chung
=> \(\Delta ACM\)= \(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)
và\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)
Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)
=> 2\(\widehat{AMC}\)= 180o
=> \(\widehat{AMC}\)= 90o
=> AM \(\perp\)CK (2)
Từ (1) và (2) => AE là đường trung trực của CK (đpcm)
Xét \(\Delta\)vuông OMH và \(\Delta\)vuông OMK có :
OM chung
\(\widehat{O_1}=\widehat{O_2}\)(vì Oz là tia phân giác của góc xOy)
Do đó : \(\Delta\)vuông OMH = \(\Delta\)vuông OMK (cạnh huyền - góc nhọn)
=> MH = MK(đpcm)