K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2020

a, Chu kì của chuyển động tròn là: T=\(\dfrac{t}{n}=\dfrac{2}{2}=1\left(s\right)\)

b, Tốc độ dài của chất điểm là: \(v=R.\omega=\dfrac{d}{2}.\dfrac{2\pi}{T}=\dfrac{6}{2}.\dfrac{2\pi}{1}=6\pi\left(\dfrac{cm}{s}\right)\) 

c, Gia tốc hướng tâm là: \(a_{ht}=\dfrac{v^2}{R}=\dfrac{\left(6\pi\right)^2}{R}=\dfrac{36.\pi^2}{3}=12\pi^2\left(\dfrac{cm}{s^2}\right)\)

Bạn tham khảo nha! Không hiểu thì hỏi mình nha.

4 tháng 10 2021

ai giúp em vs

 

Câu 2: Một chất điểm chuyển động tròn đều trên đường tròn tâm O, bán kính R = 10cm, theo chiều ngược với chiều quay của kim đồng hồ (chiều dương lượng giác) với chu kì T = 1s. Tại thời điểm ban đầu (t = 0), chất điểm ở vị trí mà bán kính nối tâm O và chất điểm hợp với trục tọa độ Ox một góc . Khảo sát chuyển động của hình chiếu của chất điểm lên trục tọa độ Ox (gốc...
Đọc tiếp

Câu 2: Một chất điểm chuyển động tròn đều trên đường tròn tâm O, bán kính R = 10cm, theo chiều ngược với chiều quay của kim đồng hồ (chiều dương lượng giác) với chu kì T = 1s. Tại thời điểm ban đầu (t = 0), chất điểm ở vị trí mà bán kính nối tâm O và chất điểm hợp với trục tọa độ Ox một góc . Khảo sát chuyển động của hình chiếu của chất điểm lên trục tọa độ Ox (gốc tọa độ O là tâm của đường tròn).
1. Viết phương trình tọa độ, vận tốc, gia tốc của hình chiếu và tính giá trị của chúng tại thời điểm t = 1/6s.
2. Tính vận tốc và gia tốc lớn nhất của hình chiếu.
3. Tính vận tốc và gia tốc của hình chiếu khi nó có tọa độ x = -5cm và đang giảm.
4. Tính tốc độ trung bình của hình chiếu trong khoảng thời gian ngắn nhất hình chiếu đi từ vị trí có tọa độ x = 0 đến vị trí có tọa độ x = 5cm.
5. Tính tốc độ trung bình lớn nhất và nhỏ nhất của hình chiếu khi nó đi được quãng đường S = 12,10 m.

 

0
18 tháng 9 2021

a, Ta có : \(T=\dfrac{1}{f}=\dfrac{1}{5}=0,2\left(s\right)\)

b, Ta có : \(C=2\pi r=0,3\pi\left(m\right)\)

\(\Rightarrow v=\dfrac{5C}{1}=\dfrac{5.0,3\pi}{1}=1,5\pi\left(m/s\right)\)

c,Ta có : \(\omega=\dfrac{2\pi}{T}=10\pi\left(rad/s\right)\)