K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Câu nào sau đây không phải là mệnh đề

A. 3+2=7 B. \(^{x^2}\)+1<0 C. 2-\(\sqrt{5}\) <0 D. 4+x=3

2, Mệnh đề "∃x ∈ R, \(^{x^2}\)=3" khẳng định rằng:

a. Bình phương của mỗi số thực bằng 3

B. Có ít nhất 1 số thực có bình phương bằng 3

C. Chỉ có 1 số thực có bình phương bằng 3

D. Nếu x là số thực thì \(x^2\)=3

3, Mệnh đề nào sau đây là mệnh đề đúng?

A. {a;b}⊂(a;b) B. {a}⊂[a;b] C. a∉[a;b) D.a∈(a;b]

4. Biết \(\sqrt{8}\)≃ 2,828427125. Giá trị gần đúng của \(\sqrt{8}\) chính xác đến hàng phần trăm là:

A. 2,829 B. 2,828 C. 2.82 D. 2,83

5, Cho mệnh đề A: "∀x ∈ R, \(x^2\)-x+7<0". Mệnh đề phủ định của A là:

A. ∀x ϵ R, \(x^2\)-x+7>0 B. ∀x ∈ R, \(x^2\)-x+7≥0

C. ∃x∈ R, \(x^2\)-x+7>0 D. ∃x ∈R, \(x^2\)-x+7≥0

6, Với giá trị nào của k thì hàm số y=(k-1)x+k-2 nghịch biến trên tập xác định của nó?

A. k<1 B. k>1 C. k<2 D. k>2

7, Cho △ABC đều, cạnh a. Mệnh đề nào sau đây đúng?

A. \(\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{CA}\) B. \(\overrightarrow{CA}=-\overrightarrow{AB}\)

C. \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=\left|\overrightarrow{CA}\right|=a\) D. \(\overrightarrow{CA}=-\overrightarrow{BC}\)

8, Trong hệ trục (O; \(\overrightarrow{i},\overrightarrow{j}\)), tọa độ của \(\overrightarrow{i}+\overrightarrow{j}\) là:

A. (0;1) B. (-1;1) C. (1;0) D. (1;1)

9, Tập xác định của hàm số \(y=\sqrt{2-x}+\sqrt{7+x}\) là:

A. (-7;2) B. [2;\(+\infty\)) C. [-7;2] D. R \ { -7;2}

10, Cho A(2;1), B(0;-3), C(3;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành là:

A. (5;5) B. (5;-2) C. (5;-4) D. (-1;-4)

11, Cho hàm số f(x) đồng biến trên khoảng (a;b), hàm số g(x) nghịch biến trên khoảng (a;b). Có thể kết luận gì về chiều biến thiên của hàm số y=f(x)-g(x) trên khoảng (a;b)?

A. Đồng biến B. Nghịch biến C. Không đổi D. Không kết luận được

12, Cho △ABC và một điểm M thỏa mãn điều kiện \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\). Trong các mệnh đề sau mệnh đề nào là mệnh đề sai?

A. MABC là hình bình hành B. \(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AC}\) C. \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BM}\) D. \(\overrightarrow{MA}=\overrightarrow{BC}\)

13, a) Viết tập hợp C gồm các nghiệm của phương trình \(x^2\)-5x+6=0 bằng cách chỉ ra các tính chất đặc trưng của nó. Liệt kê các phần tử của C.

b) Cho hai tập hợp A=(-1;3). B[1;4). Tìm A\(\cup\)B, A\(\cap\)B.

14, Cho hàm số \(y=mx^2+x-3\) (1)

a) Tìm các giá trị của m để đồ thị hàm số (1) là một Parabol

b) Tìm m để đồ thị hàm số (1) là một Parabol nhận đường thẳng d: x=1 làm trục đối xứng

15, a) Giả hệ phương trình \(\left\{{}\begin{matrix}2x+3y=5\\3x+2y=5\end{matrix}\right.\)

b) Giải phương trình \(\sqrt{x^2+3}=x+1\)

16, Cho hình bình hành ABCD

a) Chứng minh rằng \(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AC}\)

b) Xác định điểm M để \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)

17, Cho △ABC thỏa mãn \(2AB^2-3AC^2-5\overrightarrow{AB}.\overrightarrow{AC}=0.\) Các điểm M, N được xác định bởi \(\overrightarrow{MC}=-2\overrightarrow{MB}\), \(\overrightarrow{NB}=-2\overrightarrow{NA.}\) Chứng minh: AM vuông góc CN

0
Bài tập Toán lớp 10 chương 1Bài 1. Trong các phát biểu dưới đây, câu nào là mệnh đề, câu nào là mệnh đề chứa biếna. Số 11 là số chẵn.                  b. Bạn có chăm học không?c. Huế là một thành phố của Việt Nam.    d. 2x + 3 là một số nguyên dương.e. 4 + x = 3.                       f. Hãy trả lời câu hỏi này!g. Paris là thủ đô nước Ý.             h. Phương trình x² – x + 1 = 0 có nghiệm.i. 13...
Đọc tiếp

Bài tập Toán lớp 10 chương 1

Bài 1. Trong các phát biểu dưới đây, câu nào là mệnh đề, câu nào là mệnh đề chứa biến

a. Số 11 là số chẵn.                  b. Bạn có chăm học không?

c. Huế là một thành phố của Việt Nam.    d. 2x + 3 là một số nguyên dương.

e. 4 + x = 3.                       f. Hãy trả lời câu hỏi này!

g. Paris là thủ đô nước Ý.             h. Phương trình x² – x + 1 = 0 có nghiệm.

i. 13 là một số nguyên tố.              j. x² + 1 không phải số nguyên tố.

Bài 2. Trong các mệnh đề sau, mệnh đề nào là đúng? Giải thích.

a. Nếu a chia hết cho 9 thì a chia hết cho 3.      b. Nếu a ≥ b thì a² ≥ b².

c. Nếu a chia hết cho 3 thì a chia hết cho 6.      d. π > 2 và π < 4.

e. 2 và 3 là hai số nguyên tố cùng nhau.         f. 81 là số chính phương.

g. 5 > 3 hoặc 5 < 3.                        h. Số 15 chia hết cho 4 hoặc cho 5.

Bài 3. Trong các mệnh đề sau, mệnh đề nào đúng? Giải thích.

a. Hai tam giác bằng nhau khi và chỉ khi chúng có diện tích bằng nhau.

b. Hai tam giác bằng nhau khi và chỉ khi chúng đồng dạng và có một cạnh bằng nhau.

c. Tam giác là tam giác đều khi và chỉ khi có hai đường trung tuyến bằng nhau và một góc bằng 60°.

d. Một tam giác là tam giác vuông khi và chỉ khi có một góc bằng tổng của hai góc còn lại.

e. Đường tròn có một tâm đối xứng và một trục đối xứng.

f. Hình chữ nhật có hai trục đối xứng.

g. Một tứ giác là hình thoi khi và chỉ khi nó có hai đường chéo vuông góc với nhau.

h. Một tứ giác nội tiếp được đường tròn khi và chỉ khi nó có hai góc vuông.

Bài 4. Cho mệnh đề chứa biến P(x), với số thực x. Tìm x để P(x) là mệnh đề đúng nếu

a. P(x): "x² – 5x + 4 = 0"          b. P(x): "x² – 3x + 2 > 0"

c. P(x): "2x + 3 ≤ 7"             d. P(x): "x² + x + 1 > 0"

Bài 5. Nêu mệnh đề phủ định của các mệnh đề sau:

a. Số tự nhiên n chia hết cho 2 và cho 3.

b. Số tự nhiên n có chữ số tận cùng bằng 0 hoặc bằng 5.

c. Tứ giác ABCD có hai cạnh đối vừa song song vừa bằng nhau.

d. Số tự nhiên n chỉ có 2 ước số là 1 và n.

Bài 6. Nêu mệnh đề phủ định của các mệnh đề sau:

a. ∀x ∈ R, x² > 0.                      b. Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp∈ R, x > x².

c. Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp∈ Q, 4x² – 1 = 0.                 d. ∀x ∈ R, x² – x + 7 > 0.

e. ∀x ∈ R, x² – x – 2 < 0.                f. Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp∈ R, x² = 3.

g. ∀x ∈ N, n² + 1 không chia hết cho 3.      h. ∀x ∈ N, n² + 2n + 5 là số nguyên tố.

i. ∀x ∈ N, n² + n chia hết cho 2.           k. ∀x ∈ N, n² – 1 là số lẻ.

Bài 7. Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định xem mệnh đề phủ định đó đúng hay sai

a. P: "Phương trình x² – x + 1 = 0 có nghiệm."

b. Q: "17 là số nguyên tố"

c. R: "Số 12345 chia hết cho 3"

d. S: "Số 39 không thể biểu diễn thành tổng của hai số chính phương"

e. T: "210 – 1 chia hết cho 11".

Bài 8. Phát biểu các mệnh đề sau sử dụng khái niệm "điều kiện cần", "điều kiện đủ":

a. Nếu một số tự nhiên có chữ số tận cùng là chữ số 5 thì nó chia hết cho 5.

b. Nếu a + b > 0 thì một trong hai số a và b phải dương.

c. Nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3.

d. Số tự nhiên n là số lẻ khi và chỉ khi n² là số lẻ.

e. Nếu a và b đều chia hết cho c thì a + b chia hết cho c.

f. Một số chia hết cho 6 khi và chỉ khi nó chia hết cho 2 và cho 3.

g. Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau.

h. Nếu tứ giác là hình thoi thì có hai đường chéo vuông góc với nhau.

i. Nếu tam giác đều thì nó có hai góc bằng nhau.

j. Một tam giác là vuông khi và chỉ khi nó có một góc bằng tổng hai góc còn lại.

k. Một tứ giác là hình chữ nhật khi và chỉ khi nó có ba góc vuông.

l. Một tứ giác nội tiếp được trong đường tròn khi và chỉ khi nó có hai góc đối bù nhau.

m. Hình chữ nhật có hai cạnh liên tiếp bằng nhau là hình vuông và ngược lại.

n. Tam giác có ba đường cao bằng nhau là tam giác đều và ngược lại.

p. Một số tự nhiên có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và ngược lại.

Bài 9. Chứng minh các mệnh đề sau bằng phương pháp phản chứng.

a. Nếu a + b < 2 thì một trong hai số a và b nhỏ hơn 1.

b. Một tam giác không phải là tam giác đều thì có ít nhất một góc nhỏ hơn 60°.

c. Nếu x ≠–1 và y ≠–1 thì x + y + xy ≠–1.

d. Nếu tích của hai số tự nhiên là một số lẻ thì tổng của chúng là một số chẵn.

e. Nếu x² + y² = 0 thì x = 0 và y = 0.

Bài 10. Viết mỗi tập hợp sau bằng cách liệt kê các phần tử trong đó.

a. A = {x ∈ R | (2x² – 5x + 3)(x² – 4x + 3) = 0}

b. B = {x ∈ Z | 2x² – 5x + 3 = 0}

c. C = {x ∈ N | x + 3 < 4 + 2x và 5x – 3 < 4x – 1}

d. D = {x ∈ Z | –1 ≤ x + 1 ≤ 1}

e. E = {x ∈ R | x² + 2x + 3 = 0}

f. F = {x ∈ N | x là số nguyên tố không quá 17}

Bài 11. Viết các tập hợp sau bằng cách chỉ rõ tính chất đặc trưng

a. A = {0; 4; 8; 12; 16}            b. B = {–3; 9; –27; 81}

c. C = {9; 36; 81; 144}            d. D = {3, 6, 9, 12, 15}

e. E = Tập hợp các điểm thuộc đường trung trực của đoạn thẳng AB.

f. H = Tập hợp các điểm thuộc đường tròn tâm I cho trước và có bán kính bằng 5.

Bài 12. Tìm tất cả các tập con, các tập con gồm hai phần tử của các tập hợp sau

a. A = {1; 2; 3}                    b. B = {a; b; c; d}

c. C = {x ∈ R | 2x² – 5x + 2 = 0}       d. D = {x ∈ Q | x² – 4x + 2 = 0}

Bài 13. Trong các tập hợp sau, tập nào là tập con của tập nào?

a. A = {1; 2; 3} và B = [1; 4).

b. A = tập các ước số tự nhiên của 6 và B = tập các ước số tự nhiên của 12.

c. A = tập các hình bình hành và B = tập các hình chữ nhật.

Bài 14. Tìm A ∩ B, A U B, A \ B, B \ A.

a. A = {2, 4, 7, 8, 9, 12}, B = {2, 8, 9, 12}

b. A = {2, 4, 6, 9}, B = {1, 2, 3, 4}

c. A = {x ∈ R | 2x² – 3x + 1 = 0}, B = {x ∈ R | (2x – 1)² = 1}

d. A = tập các ước số của 12, B = tập các ước số của 18.

e. A = {x ∈ R | (x + 1)(x – 2)(x² – 8x + 15) = 0}, B = tập hợp các số nguyên tố có một chữ số.

f. A = {x ∈ R | (x² – 9)(x² – 5x – 6) = 0}, B = {x ∈ R | x ≤ 5}.

Bài 15. Tìm tất cả các tập hợp X sao cho

Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp

Bài 16. Tìm các tập hợp A, B thỏa mãn các điều kiện

a. A ∩ B = {0; 1; 2; 3; 4}, A\B = {–3; –2}, B\A = {6; 9; 10}.

b. A ∩ B = {1; 2; 3}, A\B = {4; 5}, B\A = {6; 9}

Bài 17. Tìm A U B U C, A ∩ B ∩ C với

a. A = [1; 4], B = (2; 6), C = (1; 2)        b. A = (–∞; –2], B = [3; +∞), C = (0; 4)

c. A = [0; 4], B = (1; 5), C = (−3; 1]       d. A = (−5; 1], B = [3; +∞), C = (−∞; −2)

e. A = [3; +∞), B = (0; 4), C = (2; 3)       f. A = (1; 4), B = (2; 6), C = (5; 7]

Bài 18. Cho tập hợp A = {a, b, c, d, e}

a. A có bao nhiêu tập hợp con khác nhau.

b. Có bao nhiêu tập con của A có không quá 4 phần tử.

Bài 19. Tìm A ∩ B; A U B; A \ B; B \ A; biết

a. A = (2; +∞) và B = (–11; 5).          b. A = (–∞; 3] và B = (–2; 12).

c. A = [–3; 16] và B = (–8; 10).         d. A = [–11; 9] và B = [–9; 19)

e. A = [2; 6] và B = [3; 5].            f. A = {x ∈ Q| 1 ≤ x ≤ 4} và B = {3; 4; 5}

Bài 20. Xác định các tập hợp sau và biểu diễn chúng trên trục số

a. [–3; 1) ∩ (0; 4]     b. (–∞; 1) U (–2; 3)      c. (–2; 3) \ (0; 7)

d. (–2; 3) \ [0; 7)      e. R \ (3; +∞)          f. R \ {1}

g. R \ (0; 3]         h. [–3; 1] \ (–1; +∞)      i. R ∩ [(–1; 1) U (3; 7)]

j. [– 3;1) U (0; 4]      k. (0; 2] U [–1; 1]       ℓ. (–∞; 12) U (–2; +∞)

m. (–2; 3] ∩ [–1; 4]    n. (4; 7) ∩ (–7; –4)      o. (2; 3) ∩ [3; 5)

p. (–2; 3) \ (1; 5)      q. R \ {2}

Bài 21. Cho A = (2m – 1; m + 3) và B = (–4; 5). Tìm m sao cho

a. A là tập hợp con của B   b. B là tập hợp con của A    c. A ∩ B = ϕ

Bài 22. Tìm phần bù của các tập sau trong tập R

a. A = [–12; 10)          b. B = (–∞; –2) U (2; +∞)     c. C = {x ∈ R | –4 < x + 2 ≤ 5}

4
15 tháng 6 2019

Dài thế viết ra cho tốn sức à bạn

14 tháng 9 2023

d) \(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)

\(\Leftrightarrow0< x< 1\)

15 tháng 9 2023

a) \(P\left(x\right):"x^2-5x+4=0"\)

\(x^2-5x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng

b) \(P\left(x\right):"x^2-5x+6=0"\)

\(x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng

c) \(P\left(x\right):"x^2-3x=0"\)

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng

d) \(P\left(x\right):"\sqrt[]{x}>x"\)

\(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)

\(\Leftrightarrow0< x< 1\)

Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng

e) \(P\left(x\right):"2x+3< 7"\)

\(2x+3< 7\)

\(\Leftrightarrow2x< 4\)

\(\Leftrightarrow x< 2\)

Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng

f) \(P\left(x\right):"x^2+x+1>0"\)

\(x^2+x+1>0\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng

Bài 1:

a: Mệnh đề phủ định là \(\exists x\in R;x^2< x\)

b: Mệnh đề P sai vì với 0<x<1 thì \(x^2< x\)

bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau: a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0 b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1) bài 2: xác định tính đúng-sai của các mệnh đề sau : a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4 bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''. Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính...
Đọc tiếp

bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau:

a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0

b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1)

bài 2: xác định tính đúng-sai của các mệnh đề sau :

a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4

bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''.

Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính đúng-sai của cả 2 mệnh đề.

b) Phát biểu mệnh đề đảo của P và chứng tỏ mệnh đề đó là đúng.Phát biểu mệnh đề dưới dạng mệnh đề tương đương

Bài 4: Xét tính đúng sai của các mệnh đề sau:

a) P: ''∀x ∈ R,∀y ∈ R: x + y = 1'' b) Q:'' ∃x ∈ R, ∃y ∈ R: x + y = 2''

Mọi người giải hộ để em đối chiếu đáp án của mình với ạ,em cảm ơn.

1
NV
1 tháng 7 2019

Bài 1:

a/ Với \(x=0\Rightarrow0-0+1>0\) đúng

Vậy mệnh đề đúng

Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)

Hoặc: \(∄x\in R,x^3-x^3+1>0\)

b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Vậy mệnh đề đã cho là đúng

Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Câu 2:

a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)

\(\Rightarrow\) Mệnh đề sai

b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)

\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)

Câu 3:

P là mệnh đề đúng

\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"

\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"

\(\overline{P}\) là mệnh đề sai

Chứng minh P đúng:

Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\)\(b\ne0\)

\(\Rightarrow2x=\frac{2a}{b}\)

Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ

b/ Mệnh đề đảo của P:

" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"

Chứng minh tương tự như trên

c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"

Bài 4:

a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)

b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)

26 tháng 11 2019

a) 3 + 2 = 7 là mệnh đề và là mệnh đề sai

Vì 3 + 2 = 5 ≠ 7

b) 4 + x = 3 là mệnh đề chứa biến

Vì với mỗi giá trị của x ta được một mệnh đề.

Ví dụ : với x = 1 ta có mệnh đề « 4 + 1 = 3 ».

với x = –1 ta có mệnh đề « 4 + (–1) = 3 ».

với x = 0 ta có mệnh đề 4 + 0 = 3.

c) x + y > 1 là mệnh đề chứa biến

Vì với mỗi cặp giá trị của x, y ta được một mệnh đề.

Ví dụ : x = 0 ; y = 1 ta có mệnh đề « 0 + 1 > 1 »

x = 1 ; y = 3 ta có mệnh đề « 1 + 3 > 1 ».

d) 2 – √5 < 0 là mệnh đề và là mệnh đề đúng

Vì 2 = √4 và √4 < √5.

11 tháng 10 2023

thanks bro

 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.

Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)

b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.

Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x =  - 1\) và \(x =  - 2\).

c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.

Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).

d) \(\overline D \): “Số 2 025 không chia hết cho 15”.

Sai vì 2025 = 15. 135, chia hết cho 15.