Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xin lỗi bạn nhé !!!
b) 2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
=> 2010^2 > 2009 . 2011
c)
\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\)
Nên \(3^{450}>5^{300}\)
a) A = 2 + 22 + ... + 22010
= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
= 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)
= 2.3 + 23.3 + ... + 22009.3 chia hết cho 3
A = 2 + 22 + ... + 22010
= ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
= 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)
= 2.7 + 24.7 + ... + 22008.7 chia hết cho 7
b) Xét A = 2009.2011
= (2010-1) . (2010+1)
= 2010.2010 + 1.2010 - 1.2010 - 1.1
= 2010.2010 - 1
B = A - 1
Vậy B < A
c) Ta có : 3450 = 35.90 = 1590
5300 = 53.100 = 15100
Vì 1590 < 15100 nên 3450 < 5300 hay A < B
a, Chia hết cho 3 thì nhóm 2 số thành 1 cặp ; chia hết cho 7 thì nhóm 3 số thành 1 cặp
b, Đề phải là A = 2009.2011
Có :A = 2009.(2010+1) = 2009.2010+2009
= 2009.2010+2010-1 = 2010.(2009+1)-1 = 2010^2-1
Vì 2010^2-1 < 2010^2 = B => A < B
c, A = (3^3)^150 = 27^150
B = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => A > B
k mk nha
Có 333^444=(333^4)^111 và 444^333=(444^3)^111
Như vậy ta cần so sánh 333^4 và 444^3:
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó
333^444>444^333
2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
b) phân tích 2^16 - 1 ta được
2^16-1=(2^8+1)(2^4+1)(2^2+1)(2^2-1)=A
Vậy B>A
tick mik đi rùi mik làm típ câu b cho !!!
a)
Vì \(\frac{2009}{2010}< 1\Rightarrow\frac{2009}{2010}< \frac{2009+1}{2010+1}=\frac{2010}{2011}\)
Cần nhớ:
Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\left(n\inℕ^∗\right)\)
Và tương tự: \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\left(n\inℕ^∗\right)\)
b)Ta có:
\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)
\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)
Vì: \(81^{100}>64^{100}\Leftrightarrow\frac{1}{81^{100}}< \frac{1}{64^{100}}\Leftrightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)
c) Ta có:
\(\frac{200+201}{201+202}=\frac{401}{403}< 1\)
\(\frac{200}{201}+\frac{201}{202}=1-\frac{1}{201}+1-\frac{1}{202}=2-\left(\frac{1}{201}+\frac{1}{202}\right)>1\)
=>\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Câu a bạn so sánh phần bù
Kết quả là 2009/2010<2010/2011
Câu b tách veesphair ra thành 200/403+201/403
Vì 200/201>200/403 và 201/202>202/403 nên Kết quả là >
Câu c thì phải biến đổi
Câu cuối quá dễ