Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T giải thử thôi nhé :w
a) \(1\frac{1}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-2\frac{1}{3}xy\right)\)
\(=\frac{5}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-\frac{5}{2}xy\right)\)
\(=1.\frac{5}{4}x^2y\left(-\frac{5}{2}xy\right)\)
\(=-\frac{5}{4}x^2y.1.\frac{5}{2}xy\)
\(=-1.\frac{5}{4}.\frac{5}{2}x^3y^2\)
\(=-1.\frac{25x^3y^2}{8}\)
\(=-\frac{25x^3y^2}{8}\)
a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x
Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y
= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y
Ta lại có : 1 + 4y/24 = 1+4y / 9+3y
=> 24=9+3y => 15=3y => y=5
Vậy y=5
Nhớ like
b, 1+3y/12 = 1+5y/5x = 1+7y/4x
Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x
= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x
Ta lại có: 1+5y / 5x = 1+5y / 6+2x
=> 5x = 6+2x => 3x = 6 => x=2
Vậy x =2
Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x
=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x
=> 2x+3y-1 / 12 = 2x+3y-1 / 6x
=> 12 = 6x => x =2
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
a) Ta có : \(x - 2xy + y - 3 = 0\)
\(\Rightarrow-2xy+x+y=3\)
\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)
\(\Rightarrow4xy-2x-2y=-6\)
\(\Rightarrow4xy-2x-2y+1=-6+1\)
\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)
\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)
Tự lập bảng đi -.-
Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz + Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0 + Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36 + Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6 + Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3 + Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2 - Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2 - Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2 |
Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
a: \(\dfrac{-0.2}{x}=\dfrac{x}{-0.8}\)
\(\Leftrightarrow x^2=\dfrac{1}{5}\cdot\dfrac{4}{5}=\dfrac{4}{25}\)
=>x=2/5 hoặc x=-2/5
c: \(\dfrac{x-1}{x-2}=\dfrac{-3}{4}\)
=>4(x-1)=-3(x-2)
=>4x-4=-3x+6
=>7x=10
hay x=10/7
d: \(\dfrac{2-x}{5-x}=\dfrac{x+3}{x+2}\)
\(\Leftrightarrow\dfrac{x+3}{x+2}=\dfrac{x-2}{x-5}\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2-2x-15=x^2-4\)
=>-2x=11
hay x=-11/2
Bài 1:
a: \(A=\dfrac{2x^2+2x+2+2x^2-3x+1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{5x^2+5x+5}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{5}{x-1}\)
b: Để A là số nguyên thì \(x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{2;0;6;-4\right\}\)