Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
1) A = 120a + 36b
=> A = 12.10.a + 12.3.b
=> A = 12.(10a+3b)
Do 12.(10a+3b) \(⋮\)12
nên 120a+36b \(⋮\)12
2) Gọi (2a+7b) là (1)
(4a+2b) là (2)
Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)
Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3
Hay 4a+2b chia hết cho 3
3) Gọi (a+b) là (1)
(a+3b) là (2)
Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2
Hay (a+3b) chia hết cho 2
A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)
A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}
A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]
Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5.
A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]
= 1 + 1 + 1 + ... + 1 (1005 số 1)
= 1005 chia hết cho 5
câu 1 : \(147.13-48.13+13\)
\(=13.\left(147-48+1\right)\)
\(=13.100\)
\(=1300\)
A= 1 *2010/2
A= 1 * 1005
A= 1005
Số A có kết thúc là 5 nên A chia hết cho 5.
Bài 1:
a)CMR: ab + ba chia hết cho 11
Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)
= 11a + 11b chia hết cho 11 b)CMR: abc - cba chia hết cho 99
Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)
= 99a - 99c chia hết cho 99
Bài 2
A= (321 + 322 + 323) + ... + (327 + 328 + 329) A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)
A=321 . 13 + ... + 327 . 13
A= 13 . (321 + ... + 327) chia hết cho 13
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4