K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)

A= 3.4+3^3.4+...+3^2007 .4

A= 4(3+3^3+...+3^2008)=>ĐPCM

2, theo đề bài :a+b chia hết cho 2

ta có : a+3b=a+b+2b

vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM

 

3 tháng 10 2015

1)A=3+32+33+...+32008

A=(3+32)+(33+34)+...+(32007+32008)

A=3(1+3)+33(1+3)+...+32007(1+3)

A=3.4+33.4+...+32007.4

A=4(3+....+32007) chia hết cho 4

 

29 tháng 6 2017

1) A = 120a + 36b

=> A = 12.10.a + 12.3.b

=> A = 12.(10a+3b)

Do 12.(10a+3b) \(⋮\)12

nên 120a+36b \(⋮\)12

2) Gọi (2a+7b) là (1)

         (4a+2b) là (2)

Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)

Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3

Hay 4a+2b chia hết cho 3 

3) Gọi (a+b) là (1)

          (a+3b) là (2)

Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2

Hay (a+3b) chia hết cho 2

4 tháng 4 2015

A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)

A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}

A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]

Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5. 

5 tháng 4 2015

A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]

   = 1 + 1 + 1 + ... + 1 (1005 số 1)

   = 1005 chia hết cho 5

5 tháng 12 2016

nỏ thích trả lời

:D :D :D

27 tháng 8 2021

giúp mik nếu đúg mik sẽ tik

 

27 tháng 8 2021

giúp mik ik

 

4 tháng 11 2016

câu 1 : \(147.13-48.13+13\)

           \(=13.\left(147-48+1\right)\)

           \(=13.100\)

           \(=1300\)

4 tháng 11 2016

câu 1:

147 . 13 - 48 . 13 + 13 = 147 . 13 - 48 . 13 + 13 . 1

= 13(147 - 48 + 1)

= 13 . 100

= 1300

2 câu còn lại quên cách giải

22 tháng 11 2016

A=  1 *2010/2 
A=  1 * 1005

A= 1005
Số A có kết thúc là 5 nên A chia hết cho 5.

9 tháng 11 2017

Bài 1: 

a)CMR: ab + ba chia hết cho 11 

Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)

                                         = 11a + 11b chia hết cho 11                                                                                                                                                                                                                                                                                                              b)CMR: abc - cba chia hết cho 99

Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)

                                         = 99a - 99c chia hết cho 99

Bài 2

  A= (321 + 322 + 323) + ... + (327 + 328 + 329)                                                                                                                                                                               A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)                                          

  A=321 . 13 + ... + 327 . 13  

  A= 13 . (321 + ... + 327) chia hết cho 13