Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{37}{40}-0,64\\ =\dfrac{37}{40}-\dfrac{16}{25}\\ =\dfrac{185}{200}-\dfrac{128}{200}\\ =\dfrac{57}{200}\)
b) \(130\dfrac{25}{28}-120\dfrac{12}{35}\\ =\dfrac{3665}{28}-\dfrac{4212}{35}\\ =\dfrac{18325}{140}-\dfrac{16848}{140}\\ =\dfrac{211}{20}\)
a) A = 20 + 21 + 22 + .... + 22010
2A = 2(20 + 21 + 22 + .... + 22010)
2A = 21 + 22 + 23 + .... + 22011
A = (21 + 22 + 23 + .... + 22011) - (20 + 21 + 22 + .... + 22010)
A = 22011 - 20
A = 22011 - 1
b) B = 1 + 3 + 32 + .... + 3100
3B = 3(1 + 3 + 32 + .... + 3100)
3B = 3 + 32 + 33 + .... + 3101
2B = (3 + 32 + 33 + .... + 3101) - (1 + 3 + 32 + .... + 3100)
2B = 3101 - 1
B = (3101 - 1) : 2
c) C = 4 + 42 + 43 + .... + 4n
4C = 4(4 + 42 + 43 + .... + 4n)
4C = 42 + 43 + 44 .... + 4n + 1
3C = (42 + 43 + 44 .... + 4n + 1) - (4 + 42 + 43 + .... + 4n)
3C = 4n + 1 - 4
C = (4n + 1 - 4) : 3
d) D = 1 + 5 + 52 + .... + 52000
5D = 5(1 + 5 + 52 + .... + 52000)
5D = 5 + 52 + 53 + .... + 52001
4D = (5 + 52 + 53 + .... + 52001) - (1 + 5 + 52 + .... + 52000)
4D = 52001 - 1
4D = (52001 - 1) : 4
Bạn ơi ; tách từng bài ra cho dễ làm :
1.7C-C= 7^2016-7
C = ( 7^2016-7 ) :6
\(C=7+7^2+7^3+.....+7^{2016}\)
\(\Rightarrow7C=7^2+7^3+7^4+...+7^{2017}\)
\(\Rightarrow7C-C=\left(7^2+7^3+.....+7^{2017}\right)-\left(7+7^2+7^3+....+7^{2016}\right)\)
\(\Rightarrow6C=2^{2017}-7\)
\(\Rightarrow C=\frac{2^{2017}-7}{6}\)
Bài 1.
a) \(\dfrac{3}{14}.\dfrac{7}{20}+\dfrac{13}{20}=\dfrac{3}{40}+\dfrac{13}{20}=\dfrac{3}{40}+\dfrac{26}{40}=\dfrac{29}{40}\).
b) \(\left(2.3^{2010}+12.3^{2010}-3.3^{2010}\right):3^{2012}\)
\(=3^{2010}\left(2+12-3\right):3^{2012}\)
\(=3^{2010}.11:3^{2012}\)
\(=\left(3^{2010}:3^{2012}\right).11\)
\(=\dfrac{1}{9}.11\)
\(=\dfrac{11}{9}\).
Bài 2.
a) \(\left(5^{14}.25^{10}\right):125^3\)
\(=\left[5^{14}.\left(5^2\right)^{10}\right]:\left(5^3\right)^3\)
\(=\left[5^{14}.5^{20}\right]:5^9\)
\(=5^{34}:5^9\)
\(=5^{25}\).
b) \(\left(\dfrac{1}{2}\right)^5.\left(\dfrac{1}{64}\right)^9:\left(\dfrac{1}{16}\right)^5\)
\(=\dfrac{1}{2^5}.\dfrac{1}{64^9}:\dfrac{1}{16^5}\)
\(=\dfrac{1}{2^5}.\dfrac{1}{\left(2^6\right)^9}:\dfrac{1}{\left(2^4\right)^5}\)
\(=\dfrac{1}{2^5}.\dfrac{1}{2^{54}}:\dfrac{1}{2^{20}}\)
\(=\dfrac{1}{2^{59}}:\dfrac{1}{2^{20}}\)
\(=\dfrac{2^{20}}{2^{59}}\)
\(=\dfrac{1}{2^{39}}\).
a) 20+ 21+22+...+22010
A= 20+ 21+22+...+22010
2A= 2( 20+ 21+22+...+22010)
2A= 21+22+...+22010+22011
2A-A= (21+22+...+22010+22011) -(20+ 21+22+...+22010)
A= 22011-20
A= 22011-1
Vì 22011 > 22010 nên 22011 -1 > 22010-1
Vậy..
c)1030 = ( 103 )10 = 100010
= ( 210 )10 = 102410
Vì 1024 > 1000
=> 100010 < 102410 hay 1030 < 2100
bài 1:a,
\(3^9.3:3^{10}+\left|2010^0\right|\)
=> \(3^9.3:3^{10}+\left|1\right|\)
=> \(3^9.3:3^{10}+1\)
=> \(3^{10}:3^{10}+1\)
=> 1+1
=> 2
b, \([\left(4^9:4^7\right):8-735^0]^{2011}\)
=> \([4^2:8-735^0]^{2011}\)
=> \([2^4:2^3-735^0]^{2011}\)
=> \([2-1]^{2011}\)
=> 1
c, \(8^{2x}:8=512\)
=> \(8^{2x}:8=8^3\)
=> \(8^{2x}=8^4\)
=> 2x=4
=> x=2
bài 2:
Theo đề ta có:
\(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)
=> \((7^0+7^1)+(7^2+7^3)+......+(7^{2010}+7^{2011})\)
=> \(7^0.\left(1+7\right)+7^2\left(1+7\right)+..+7^{2010}\left(1+7\right)\)
=> \(7^0.8+7^2.8+..+7^{2010}.8\)
Mà \(7^0.8+7^2.8+..+7^{2010}.8\) \(⋮\) 8 ( vì có thừa số 8 nên chia hết cho 8)
nên \(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)\(⋮\) 8