Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
a, \(\dfrac{x}{2}+\dfrac{3x}{5}=-\dfrac{3}{2}\Rightarrow5x+6x=-15\Leftrightarrow x=-\dfrac{15}{11}\)
b, TH1 : \(\dfrac{2}{3}x-\dfrac{4}{7}=0\Leftrightarrow x=\dfrac{6}{7}\);TH2 : \(\dfrac{1}{2}-\dfrac{3}{7x}=0\Rightarrow7x-6=0\Leftrightarrow x=\dfrac{6}{7}\)
c, TH1 : \(\dfrac{4}{5}-2x=0\Leftrightarrow x=\dfrac{4}{5}:2=\dfrac{2}{5}\)
TH2 : \(\dfrac{1}{3}+\dfrac{3}{5x}=0\Rightarrow5x+9=0\Leftrightarrow x=-\dfrac{9}{5}\)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
\(\Rightarrow24x^2+16x-9x-6-\left(4x^2+16x+7x+28\right)=10x^2-2x+5x-1-33\)
\(\Rightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1-33\)
\(\Rightarrow24x^2-4x^2-10x^2+16x-9x-16x-7x+2x-5x=6+28-1-33\)
\(\Rightarrow10x^2-19x=0\)
\(\Rightarrow x\left(10x-19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\dfrac{19}{10}\right\}\)
\(1,\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow3x-6=4x+4\)
\(\Rightarrow3x-4x=4+6\)
\(\Rightarrow-x=10\Leftrightarrow x=-10\)
\(2,\frac{x-1}{3}=\frac{x+3}{5}\)
\(\Rightarrow5x-5=3x+9\)
\(\Rightarrow5x-3x=9+5\)
\(\Rightarrow2x=14\Leftrightarrow x=7\)
\(3,\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Rightarrow64x+96=72x-24\)
\(\Rightarrow72x-64x=24+96\)
\(\Rightarrow8x=120\)
\(\Rightarrow x=15\)
a) (2x-1)^3=27
b) (2x-1)^4=81
c) (x-2)^5=-32
d) (3x-1)^4=(3x-1)^6
đ) 5^x +5^x+2=650
g) 3^x-1 +5.3^x-1=162
a) (2x-1)3 = 27
(2x-1)3 = 93
2x-1 = 9
2x = 9+1
2x = 10
x = 10:5
x = 2
Vậy x = 2
b) (2x-1)4 = 81
(2x-1)4 = (\(\pm\)34)
2x-1 = \(\pm\)3
Trường hợp 1:
2x-1 = 3
2x = 3+1
2x = 4
x = 4:2
x = 2
Trường hợp 2:
2x-1 = -3
2x = -3+1
2x = -2
x = -2:2
x = -1
Vậy x \(\in[_{ }2;-1]\)
Vì không tìm thấy ngoặc nhọn nên mình dùng tạm ngoặc vuông nhé
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)