Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!2155-(174+2155)+(-68+174)=2155-174-2155-68+174
= -68
( 1 - \(\dfrac{1}{2}\) ) ( 1- \(\dfrac{1}{3}\)) ( 1 - \(\dfrac{1}{4}\)) ( 1 - \(\dfrac{1}{5}\)) = \(\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}.\dfrac{1}{5}\)
= \(\dfrac{1}{120}\)
Mình ps có 2 câu à ^.^!
mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
2:
\(B=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)
a) \(\left(\dfrac{1}{12}+3\dfrac{1}{6}-30.75\right).x-8=\left(\dfrac{3}{5}+0.415\right)\)
\(=\left(\dfrac{1}{12}+3\dfrac{1}{6}-\dfrac{123}{4}\right).x-8=\left(\dfrac{3}{5}+\dfrac{83}{200}\right)\)
\(=\dfrac{-55}{2}.x-8=\dfrac{203}{200}\)\(=\dfrac{-55}{2}.x=\dfrac{203}{200}+8=\dfrac{1803}{200}\)
\(x=\dfrac{1803}{200}:\dfrac{-55}{2}=\dfrac{-1803}{5500}\)
a, \(\left(\dfrac{1}{12}+3\dfrac{1}{6}-30,75\right).x-8=\dfrac{3}{5}+0,415\)
\(\left(\dfrac{1}{12}+3\dfrac{1}{6}-30,75\right).x-8=\dfrac{203}{200}\)
\(\left(\dfrac{1}{12}+3\dfrac{1}{6}-30,75\right).x=\dfrac{203}{200}+8\)
\(\left(\dfrac{1}{12}+3\dfrac{1}{6}-30,75\right).x=\dfrac{1803}{200}\)
\(\left(\dfrac{13}{4}-30,75\right).x=\dfrac{1803}{200}\)
\(\dfrac{-55}{2}.x=\dfrac{1803}{200}\)
\(x=\dfrac{1803}{200}:\dfrac{-55}{2}\)
\(x=\dfrac{-1803}{5500}\)
Nếu là tìm số nguyên thì hình như đề sai rồi bạn
_______________________________________
b, \(4\dfrac{1}{3}.\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\le x\le\dfrac{2}{3}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)
Cho \(A=4\dfrac{1}{3}.\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\)
\(A=4\dfrac{1}{3}.\dfrac{-1}{3}\)
\(A=\dfrac{13}{3}.\dfrac{-1}{3}\)
\(A=\dfrac{-13}{9}\)
Cho \(B=\dfrac{2}{3}.\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)
\(B=\dfrac{2}{3}.\left(\dfrac{-1}{6}-\dfrac{3}{4}\right)\)
\(B=\dfrac{2}{3}.\dfrac{-11}{12}\)
\(B=\dfrac{-11}{18}\)
Ta có: \(A\le x\le B\)
\(\dfrac{-13}{9}\le x\le\dfrac{-11}{18}\)
\(\Rightarrow x=-1\)
\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3
\(1^2+2^2+3^2...+n^2=1+2\left(1+1\right)+3\left(2+1\right)+...+n\left(n-1+1\right)\\ =1+1\cdot2+2+3\cdot2+3+...+n\left(n-1\right)+n\\ =\left(1+2+3+...+n\right)+\left[1\cdot2+2\cdot3+...+n\left(n-1\right)\right]\)
Ta có \(1\cdot2+2\cdot3+...+n\left(n-1\right)\)
\(=\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n-1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n-1\right)\left(n+2+n+1\right)\right]\\ =\dfrac{1}{3}\left(1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)\right)\\ =\dfrac{\left(n-1\right)n\left(n+1\right)}{3}\)
\(\Rightarrow1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}\\ =\dfrac{3n\left(n+1\right)+2n\left(n-1\right)\left(n+1\right)}{6}=\dfrac{n\left(n+1\right)\left(3+2n-2\right)}{6}\\ =\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)