Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2S=2\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(2S=2+1+...+\frac{1}{2^{99}}\)
\(2S-S=\left(2+1+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)
\(S=2-\frac{1}{2^{100}}\)
phần b tương tự
a. S=1+1/2+1/2^2+1/2^3+...+1/2^100
2S=2+1+1/2+1/2^2+...+1/2^99
2S-S=(2+1+1/2+1/2^2+...+1/2^99)-(1+1/2+1/2^2+1/2^3+...+1/2^100)
S=2-1/2^100
S=2^101-1/2^100
-1-2-3-4-5........-100
= (-1)+(-2)+(-3)+(-4)+(-5)+........+(-100)
Khoảng cách là
(-1)-(-2)=1
Số số hạng là
(-1)-(-100)+1=100 (số)
Tổng là
[(-1)+(-100)]x100:2=(-5050)
-1-2-3-4-5-.......-100
=-(1+2+3+4+.......+99+100)
=-(101.100/2)
=-5050
a) A = 1 - 2 + 3 - 4 + .....+ 2013 - 2014 + 2015
= (1 - 2) + (3 - 4) + .....+ (2013 - 2014) + 2015
=(-1) + (-1) + ...+ (-1) + 2015
1007 số -1
=(-1) . 1007 +2015
= -1007 + 2015
=1008
b) 1 . 2 + 2 . 3 + 3 . 4 +....99 . 100
đặt S= 1 . 2 + 2 . 3 + 3 . 4 +....99 . 100
=> 3S = 1.2.3 +2.3.(4-1) +...+99.100.(101-98)
= 1.2.3 +2.3.4-1.2.3+...+99.100.101-98.99.100
= 99.100.101
= 999900
=> S= 333300
Vậy 1 . 2 + 2 . 3 + 3 . 4 +....99 . 100 = 333300
a,A=(1-2)+(3-4)....(2013-2014)+2015
A= -1 + -1.....-1+2015
A= (2015-1):1+1
A=2015
A=(2015 x -1) x -1
A=2015
A=2015 + 2015
A=4030
b, 1/1.2 +1/2.3 ...1/99.100
1/1-1/2+1/2-1/3 ....1/99-1/100
1/1-1/100
99/100
Ta có:
A=2+2^2+2^3+2^4+.....+2^100
=> 2A=2^2+2^3+...+2^101
=> 2A-A=A=(2^2+2^3+...+2^101)-(2+2^2+2^3+2^4.....+2^100)
=> A=2^2+2^3+...+2^101-2-2^2-...-2^100
=> A=2^101-2
B=1+3+3^2+3^2+....+3^2009
=> 3B=3+3^2+3^2+....+3^2010
=> 3B-B=2B=3+3^2+3^2....+3^2010-1-3-3^2-3^2-....-3^2009
=> 2B=3^2010-1
=> B=(3^2010-1)/2
C=1+5+5^2+5^3+...+5^1998
=> 5C=5+5^2+5^3+...+5^1999
=> 5C-C=4C=5+5^2+5^3+...+5^1999-1-5-5^2-5^3-...-5^1998
=> 4C=5^1999-1
=> C=(5^1999-1)/4
D=4+4^2+4^3+...+4^n
=> 4D=4^2+4^3+...+4^n+1
=> 4D-D=3D=4^2+4^3+...+4^n+1 - 4-4^2-4^3-...-4^n
=> 3D=4^n+1 - 4
=> 3D=\(\frac{4^{n+1}-4}{3}\)
Ta có : \(A=2+2^2+2^3+.....+2^{100}\)
\(2A=2+2^2+2^3+.....+2^{101}\)
\(2A-A=2^{101}-2\)
\(A=2^{101}-2\)