Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đầu bài ta có:
\(\orbr{\begin{cases}\frac{n}{n+1}=\frac{n\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}\\\frac{n+1}{n+4}=\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\end{cases}}\)
Nếu \(n=0\Rightarrow2n=0< 1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}< \frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+4}\)
Nếu \(n\ge1\Rightarrow2n\ge2>1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}>\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}>\frac{n+1}{n+4}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)
\(\Rightarrow P< 1\)
\(\text{a)}A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}\\ A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\left(\dfrac{1}{n}>0\right)\)
Ta có \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};...;\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)
Do đó \(a< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}=1+\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
\(=1+1-\dfrac{1}{n}=1-\dfrac{1}{n}< 2\) . Suy ra \(1< a< 2\)
Vậy \(a\) khôg phải số tự nhiên
Ta có: `1 < 1 + 1/2^2 + ... + 1/n^2`
`1/(2.2) < 1/(1.2)`
`1/(3.3) < 1/(2.3)`
`...`
`1/(n^2) < 1/(n-1(n))`
`=> 1/2^2 + ... + 1/n^2 < 1/(1.2) + ... + 1/(n-1(n)) = 1/1 - 1/n < 1`.
`=> a < 1 + 1 = 2`.
`=> 1 < a < 2`.
`=>` Đây không là số tự nhiên.