Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần chứng tỏ quy đồng lên rồi tính là ra
Còn phần tính S thì áp dụng tính chất vừa chứng tỏ để tách ra
Kết quả là 49/50
Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3
=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3
=>1-1/x+1=2/3
=>1/x+1=1/3
=>3=x+1
=>x=2
Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)
=>\(1-\frac{1}{x+1}=\frac{2}{3}\)
=>\(\frac{1}{x+1}=1-\frac{2}{3}\)
=>\(\frac{1}{x+1}=\frac{1}{3}\)
=>\(x+1=3\)
=>\(x=2\)
(1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{3}\))....(1- \(\dfrac{1}{2022}\)).\(x\) = 1 - \(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}\)-...-\(\dfrac{1}{2002.2003}\)
(\(\dfrac{2-1}{2}\)).(\(\dfrac{3-1}{3}\))...(\(\dfrac{2022-1}{2022}\)).\(x\) = 1 - (\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2002.2003}\))
\(\dfrac{1}{2}\).\(\dfrac{2}{3}\)...\(\dfrac{2021}{2022}\).\(x\) = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+ ... + \(\dfrac{1}{2002}\) - \(\dfrac{1}{2003}\))
\(\dfrac{1}{2022}\).\(x\) = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2003}\))
\(\dfrac{1}{2022}\).\(x\) = \(\dfrac{1}{2003}\)
\(x\) = \(\dfrac{1}{2003}\) : \(\dfrac{1}{2022}\)
\(x\) = \(\dfrac{2022}{2003}\)
ta có 1+(1+2)+(1+2+3)+...+(1+2+3+...+100)
=4+(1+3).3/2+9+(1+4).4/2+...+(1+100).100/2
=1/2(1.2+2.3+.....+100.101)
=>1/2.100.101.102
con cái dưới thì bằng 99.100.101
=>F=51/99
ngu rua mà ko biet lam
\(\frac{3}{4}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)
\(=\frac{3}{4}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{3}{4}+1-\frac{1}{100}=\frac{87}{50}\)
(1-1/2).(1-1/3).(1-1/4)...(1-1/2002).x=1-1/1.2-1/2.3-1/3.4-...-1/2002.2003 ghi loi giai nha ae