loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2024

Bài 3:

a) 

\(\dfrac{2}{3}x+4=-12\\ \Rightarrow\dfrac{2}{3}x=-12-4=-16\\ \Rightarrow x=-16:\dfrac{2}{3}\Rightarrow x=-24\)

b) \(\dfrac{5}{6}-\dfrac{1}{6}:x=-2\dfrac{1}{2}\)

\(\Rightarrow\dfrac{5}{6}-\dfrac{1}{6}:x=-\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{6}:x=\dfrac{5}{6}+\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{6}:x=\dfrac{14}{6}\\ \Rightarrow x=\dfrac{1}{6}:\dfrac{14}{6}=\dfrac{1}{14}\) 

c) \(x:20-25\%x=-1\dfrac{1}{5}\)

\(\Rightarrow\dfrac{x}{20}-\dfrac{x}{4}=-\dfrac{4}{5}\)

\(\Rightarrow\dfrac{x}{20}-\dfrac{5x}{20}=-\dfrac{4}{5}\)

\(\Rightarrow-\dfrac{4x}{20}=\dfrac{-4}{5}\)

\(\Rightarrow-\dfrac{x}{5}=-\dfrac{4}{5}\)

\(\Rightarrow x=-4\)

d) \(\dfrac{35}{x-1}=\dfrac{15}{-6}\left(x\ne1\right)\)

\(\Rightarrow-6\cdot35=15\left(x-1\right)\\ \Rightarrow-210=15x-15\\ \Rightarrow15x=-210+15=-195\\ \Rightarrow x=\dfrac{-195}{15}\\ \Rightarrow x=-13\)

e) 

\(\left(\dfrac{9}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-1}\cdot\left(\dfrac{3}{5}\right)^5\\ \Rightarrow\left[\left(\dfrac{3}{5}\right)^2\right]^x=\dfrac{3}{5}\cdot\left(\dfrac{3}{5}\right)^5\\ \Rightarrow\left(\dfrac{3}{5}\right)^{2x}=\left(\dfrac{3}{5}\right)^6\\ \Rightarrow2x=6\\ \Rightarrow x=3\)

f) 

\(0,5^{x+1}+0,5^x=1,5\\ \Rightarrow0,5^x\cdot\left(0,5+1\right)=1,5\\ \Rightarrow0,5^x\cdot1,5=1,5\\ \Rightarrow0,5^x=1,5:1,5=1\\ \Rightarrow0,5^x=0,5^0\\ \Rightarrow x=0\)

Bài 3:

a: \(\dfrac{2}{3}x+4=-12\)

=>\(\dfrac{2}{3}x=-12-4=-16\)

=>\(x=-16:\dfrac{2}{3}=-16\cdot\dfrac{3}{2}=-24\)

b: \(\dfrac{5}{6}-\dfrac{1}{6}:x=-2\dfrac{1}{2}\)

=>\(\dfrac{5}{6}-\dfrac{1}{6}:x=-\dfrac{5}{2}\)

=>\(\dfrac{1}{6}:x=\dfrac{5}{6}+\dfrac{5}{2}=\dfrac{5}{6}+\dfrac{15}{6}=\dfrac{20}{6}=\dfrac{10}{3}\)

=>\(x=\dfrac{1}{6}:\dfrac{10}{3}=\dfrac{1}{6}\cdot\dfrac{3}{10}=\dfrac{1}{20}\)

c: \(x:20-25\%\cdot x=-1\dfrac{1}{5}\)

=>\(0,05x-0,25x=-1,2\)

=>-0,2x=-1,2

=>x=1,2:0,2=6

d: \(\dfrac{35}{x-1}=\dfrac{15}{-6}\)(ĐKXĐ: \(x\ne1\))

=>\(x-1=\dfrac{35\cdot\left(-6\right)}{15}=\dfrac{-210}{15}=-14\)

=>x=-14+1=-13(nhận)

e: \(\left(\dfrac{9}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-1}\cdot\left(\dfrac{3}{5}\right)^5\)

=>\(\left(\dfrac{3}{5}\right)^{2x}=\left(\dfrac{3}{5}\right)\cdot\left(\dfrac{3}{5}\right)^5=\left(\dfrac{3}{5}\right)^6\)

=>2x=6

=>x=3

f: \(0,5^{x+1}+0,5^x=1,5\)

=>\(0,5^x\cdot\left(0,5+1\right)=1,5\)

=>\(0,5^x=1\)

=>x=0

Bài 2:

a: \(\dfrac{-23}{32}+\dfrac{14}{21}+\dfrac{-9}{32}+\dfrac{28}{21}\)

\(=\left(-\dfrac{23}{32}-\dfrac{9}{32}\right)+\left(\dfrac{14}{21}+\dfrac{28}{21}\right)\)

\(=-\dfrac{32}{32}+\dfrac{42}{21}=-1+2=1\)

b: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)\)

\(=\left(\dfrac{12}{12}+\dfrac{8}{12}-\dfrac{3}{12}\right)\cdot\left(\dfrac{16}{20}-\dfrac{15}{20}\right)\)

\(=\dfrac{17}{12}\cdot\dfrac{1}{20}=\dfrac{17}{240}\)

c: \(\dfrac{-5}{7}\cdot16\dfrac{1}{3}+\dfrac{5}{7}\cdot\left(-23\dfrac{2}{3}\right)\)

\(=\dfrac{-5}{7}\cdot\left(16+\dfrac{1}{3}+23+\dfrac{2}{3}\right)\)

\(=-\dfrac{5}{7}\cdot40=-\dfrac{200}{7}\)

d: \(6\dfrac{4}{9}:\dfrac{7}{2}+7\dfrac{5}{9}:\left(\dfrac{2}{7}\right)^{-1}-\dfrac{1}{2}\)

\(=\left(6+\dfrac{4}{9}\right)\cdot\dfrac{2}{7}+\left(7+\dfrac{5}{9}\right)\cdot\dfrac{2}{7}-\dfrac{1}{2}\)

\(=\dfrac{2}{7}\left(6+\dfrac{4}{9}+7+\dfrac{5}{9}\right)-\dfrac{1}{2}=\dfrac{2}{7}\cdot14-\dfrac{1}{2}=4-\dfrac{1}{2}=\dfrac{7}{2}\)

e: \(\left(2^3:\dfrac{1}{2}\right)\cdot\dfrac{1}{8}+\dfrac{1}{9}\cdot\left(-3\right)^2-\left(-\dfrac{1}{2015}\right)^0\)

\(=\left(8\cdot2\right)\cdot\dfrac{1}{8}+\dfrac{1}{9}\cdot9-1=2+1-1=2\)

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Lời giải:
Trên $AC$ lấy $E$ sao cho $AB=AE$. Xét tam giác $ABD$ và $AED$ có:

$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là tia phân giác $\widehat{A}$)

$AD$ chung

$AB=AE$

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

$\Rightarrow BD=DE(1)$ và $\widehat{ABD}=\widehat{AED}$

Có:

$\widehat{DEC}=180^0-\widehat{AED}=180^0-\widehat{ABD}=\widehat{ECD}+\widehat{BAC}> \widehat{ECD}$

$\Rightarrow DC> DE(2)$

Từ $(1); (2)\Rightarrow DC> DB$

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Hình vẽ:

11 tháng 1 2024

          \(\widehat{M_1}\) = \(\widehat{M_3}\) (hai góc đối đỉnh)

         \(\widehat{M_3}\) + \(\widehat{N_1}\) = 1800 (hai góc trong cùng phía)

         \(\widehat{M_3}\)         = 1800 - \(\widehat{N_1}\) 

         \(\widehat{M_3}\)         = 1800 - 500

         \(\widehat{M_3}\)        = 1300

        ⇒ \(\widehat{M_1}\) = 1300

Kết luận: \(\widehat{M_1}\) = 1300

           

NV
13 tháng 1 2024

Câu b đề thiếu rồi em, cần biết quan hệ giữa a và b nữa mới tính được

13 tháng 1 2024

Bài 4:

a; A = \(\dfrac{4a-5b}{6a+b}\); biết \(\dfrac{a}{b}\) = \(\dfrac{2}{3}\)

    \(\dfrac{a}{b}\) = \(\dfrac{2}{3}\) ⇒ a = \(\dfrac{2}{3}\).b

Thay a = \(\dfrac{2}{3}\)b vào biểu thức A ta có:

        A = \(\dfrac{4.\dfrac{2}{3}.b-5.b}{6.\dfrac{2}{3}.b+b}\) 

       A  = \(\dfrac{b.\left(\dfrac{8}{3}-5\right)}{b.\left(4+1\right)}\)

        A  = \(\dfrac{\dfrac{-7}{3}}{5}\)

         A =  \(\dfrac{-7}{15}\)

 

NV
13 tháng 1 2024

Do tam giác MQE vuông tại E \(\Rightarrow\widehat{EMQ}+\widehat{EQM}=90^0\) (1)

Mà \(\widehat{EQM}\) là góc ngoài của tam giác NPQ, theo tính chất góc ngoài của tam giác:

\(\widehat{EQM}=\widehat{ENP}+\widehat{QPN}\) (2)

\(\left(1\right);\left(2\right)\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}=90^0\)

\(\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}-90^0=0\)