Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
1: \(\dfrac{1}{2}-\left(\dfrac{2}{3}\right)^9:\left(\dfrac{2}{3}\right)^7+\dfrac{5}{6}\)
\(=\dfrac{1}{2}-\left(\dfrac{2}{3}\right)^2+\dfrac{5}{6}\)
\(=\dfrac{1}{2}-\dfrac{4}{9}+\dfrac{5}{6}\)
\(=\dfrac{9}{18}-\dfrac{8}{18}+\dfrac{15}{18}=\dfrac{16}{18}=\dfrac{8}{9}\)
2: \(\left(\dfrac{3}{7}\right)^3\cdot\left(\dfrac{7}{6}\right)^3+\dfrac{2}{3}:\left(\dfrac{4}{3}\right)^2\)
\(=\dfrac{1}{8}+\dfrac{2}{3}:\dfrac{16}{9}\)
\(=\dfrac{1}{8}+\dfrac{2}{3}\cdot\dfrac{9}{16}\)
\(=\dfrac{1}{8}+\dfrac{3}{8}=\dfrac{4}{8}=\dfrac{1}{2}\)
3: \(-\dfrac{4}{7}:\dfrac{9}{14}+\left(\dfrac{4}{3}\right)^4:\left(\dfrac{4}{3}\right)^2\)
\(=-\dfrac{4}{7}\cdot\dfrac{14}{9}+\left(\dfrac{4}{3}\right)^2\)
\(=-\dfrac{8}{9}+\dfrac{16}{9}=\dfrac{8}{9}\)
4: \(\left(-\dfrac{4}{3}+1\right)-\left(-\dfrac{2}{3}\right)^{21}:\left(-\dfrac{2}{3}\right)^{19}\)
\(=\dfrac{-1}{3}-\left(-\dfrac{2}{3}\right)^2\)
\(=-\dfrac{1}{3}-\dfrac{4}{9}=-\dfrac{7}{9}\)
5: \(\left(\dfrac{5}{2}-\dfrac{4}{3}\right)\cdot\dfrac{6}{7}+\left(-\dfrac{3}{2}\right)^5:\left(-\dfrac{3}{2}\right)^3\)
\(=\dfrac{15-8}{6}\cdot\dfrac{6}{7}+\left(-\dfrac{3}{2}\right)^2\)
\(=1+\dfrac{9}{4}=\dfrac{13}{4}\)
6: \(25^{10}\cdot\left(\dfrac{1}{5}\right)^{20}+\left(-\dfrac{3}{4}\right)^8\cdot\left(-\dfrac{4}{3}\right)^8-2011^0\)
\(=\dfrac{5^{20}}{5^{20}}+1-1=1+1-1=1\)
7: \(\left(\dfrac{3}{5}\right)^{10}\cdot\left(\dfrac{5}{3}\right)^{10}-\dfrac{13^4}{39^4}+2014^0\)
\(=\left(\dfrac{3}{5}\cdot\dfrac{5}{3}\right)^{10}-\dfrac{1}{3^4}+1\)
\(=1+1-\dfrac{1}{81}=2-\dfrac{1}{81}=\dfrac{161}{81}\)
8: \(\left(-0,5\right)^5:\left(-0,5\right)^3-\left(\dfrac{17}{2}\right)^7:\left(\dfrac{17}{2}\right)^6\)
\(=\left(-0,5\right)^2-\dfrac{17}{2}\)
\(=\dfrac{1}{4}-\dfrac{17}{2}=\dfrac{1}{4}-\dfrac{34}{4}=-\dfrac{33}{4}\)