Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
Đáp án A đúng
\(y'=9x^2+3>0;\forall v\in R\)
6.
Đáp án B đúng
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)
con hươu A nha,tick cho 1 cái đi,ko đúng ko tick cũng được nha
21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)
=> (P):2x - y +z - 6 = 0. ĐA: D
22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C
34. ĐA: A.
37. M --->Ox: A(3; 0; 0)
Oy: B(0; 1; 0)
Oz: C(0; 0;2)
Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
\(\Leftrightarrow\left[f^2\left(x\right)\right]'-3\left(x+1\right)^2=\left[\left(x^2+x\right).f\left(x\right)\right]'\)
\(\Leftrightarrow\left[f^2\left(x\right)\right]'-\left[\left(x^2+x\right).f\left(x\right)\right]'=3\left(x+1\right)^2\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow f^2\left(x\right)-\left(x^2+x\right).f\left(x\right)=\int3\left(x+1\right)^2dx=\left(x+1\right)^3+C\)
Thay \(x=0\Rightarrow1^2-0=1+C\Rightarrow C=0\)
\(\Rightarrow f^2\left(x\right)-\left(x^2+x\right)f\left(x\right)=\left(x+1\right)^3\)
\(\Leftrightarrow\left[f\left(x\right)+x+1\right]\left[f\left(x\right)-\left(x+1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}f\left(x\right)=-x-1\\f\left(x\right)=\left(x+1\right)^2\end{matrix}\right.\)
Thay \(x=0\) vào thấy \(f\left(x\right)=-x-1\) ko thỏa mãn giả thiết \(f\left(0\right)=1\)
\(\Rightarrow f\left(x\right)=\left(x+1\right)^2\)
\(\Rightarrow f'\left(x\right)=2\left(x+1\right)\)
Hoành độ giao điểm: \(\left(x+1\right)^2=2\left(x+1\right)\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(V=\pi\int\limits^1_{-1}\left[4\left(x+1\right)^2-\left(x+1\right)^4\right]=\dfrac{64\pi}{15}\)