Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
a) Ta có: \(\dfrac{AE}{AB}=\dfrac{2}{5}\)
\(\dfrac{AF}{AC}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)\(\left(=\dfrac{2}{5}\right)\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{2}{5}=\dfrac{EF}{12}\)
hay EF=4,8(cm)
Vậy: EF=4,8cm
x3 _ x2 _ 4x - 4 = 0
x mũ 2(x+1)- 4(x+1)=0
(x mũ 2 - 4) (x+1)=0
(x+2) (x-2) (x+1) =0
suy ra (x+2)=0
(x-2)=0
(x+1)=0
vậy x=-2
x=2
x= -1
good luck!
Sửa đề : \(x^3-x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)
$P=4a^2+4a(b-3)+b^2-6b+9+3b^2-6b+3$
$=4a^2+2.2a.(b-3)+(b-3)^2+3.(b-1)^2$
$=(2a+b-3)^2+3.(b-1)^2$
Mà $(2a+b-3)^2 \geq 0;3.(b-1)^2 \geq 0$ với mọi $a;b$
Nên $P=(2a+b-3)^2+3.(b-1)^2 \geq 0$
Dấu $=$ xảy ra $⇔(2a+b-3)^2=0;3.(b-1)^2=0⇔2a+b-3=0;b=1⇔a=1;b=1$
Vậy $MinP=0$ tại $a=b=1$
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB∼ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
a) (Bạn tự vẽ hình ạ)
Ta có AD.AB = AE.AC
⇒ \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét \(\Delta ABC\) và \(\Delta AED\) có:
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
\(\widehat{A}:chung\)
⇒ \(\Delta ABC\sim\Delta AED\) \(\left(c.g.c\right)\)
⇒ DE // BC
a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔDAB(g-g)
Lời giải:
Vận tốc trung bình đi từ A đến B là:
$\frac{20+30}{2}=25$ (km/h)
Kiến thức cần nhớ:
Vận tốc trung bình bằng tổng quãng đường chia cho tổng thời gian đi hết quãng đường đó!
Công thức Vtb = \(\dfrac{S_1+S_2+...+S_n}{t_1+t_2+...+t_n}\)
Giải chi tiết:
Gọi quãng đường AB là: S (km); S > 0
Thời gian người đó đi hết nửa quãng đường đầu là:
\(\dfrac{S}{2}\) : 20 = \(\dfrac{S}{40}\) (giờ)
Thời gian người đó đi hết nửa quãng đường sau là:
\(\dfrac{S}{2}\) : 30 = \(\dfrac{S}{60}\) (giờ)
Vận tốc trung bình của người đó đi từ A đến B là:
Áp dụng công thức Vtb = \(\dfrac{S_1+S_2}{t_1+t_2}\) ta có
Vtb = \(\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{60}}\)
Vtb = \(\dfrac{S}{S.\left(\dfrac{1}{40}+\dfrac{1}{60}\right)}\)
Vtb = \(\dfrac{1}{\dfrac{1}{24}}\)
Vtb = 24 (km/h)
Bài 5:
a/\(\dfrac{3x^2-2x}{x-3}+\dfrac{4x+1}{3-x}+\dfrac{10-2x^2}{x-3}\)
\(=\dfrac{3x^2-2x}{x-3}-\dfrac{4x+1}{x-3}+\dfrac{10-2x^2}{x-3}\)
\(=\dfrac{3x^2-2x-4x-1+10-2x^2}{x-3}\)
\(=\dfrac{x^2-6x+9}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\)
b/\(\dfrac{2-a^2}{a-2}+\dfrac{a-2a^2}{2-a}+\dfrac{2-3a}{a-2}\)
\(=\dfrac{2-a^2}{a-2}-\dfrac{a-2a^2}{a-2}+\dfrac{2-3a}{a-2}\)
\(=\dfrac{2-a^2-a+2a^2+2-3a}{a-2}\)
\(=\dfrac{a^2-4a+4}{a-2}=\dfrac{\left(a-2\right)^2}{a-2}=a-2\)
c/\(\dfrac{x+37}{x-5}-\dfrac{12+10x}{x-5}-\dfrac{x\left(x-1\right)}{5-x}\)
\(=\dfrac{x+37}{x-5}-\dfrac{12+10x}{x-5}+\dfrac{x^2-x}{x-5}\)
\(=\dfrac{x+37-12-10x+x^2-x}{x-5}\)
\(=\dfrac{x^2-10x+25}{x-5}=\dfrac{\left(x-5\right)^2}{x-5}=x-5\)
Bài 6:
a: \(\dfrac{5}{x+3}+\dfrac{7-2x}{x^2-9}\)
\(=\dfrac{5}{x+3}+\dfrac{7-2x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{5\left(x-3\right)+7-2x}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x-8}{\left(x+3\right)\left(x-3\right)}\)
b: \(\dfrac{x}{3y^2-xy}+\dfrac{9y}{x^2-3xy}\)
\(=\dfrac{x}{y\left(3y-x\right)}+\dfrac{9y}{x\left(x-3y\right)}\)
\(=\dfrac{-x}{y\left(x-3y\right)}+\dfrac{9y}{x\left(x-3y\right)}\)
\(=\dfrac{-x^2+9y^2}{xy\left(x-3y\right)}\)
\(=-\dfrac{\left(x-3y\right)\left(x+3y\right)}{xy\left(x-3y\right)}=\dfrac{-x-3y}{xy}\)
c: \(\dfrac{3}{x-2}-\dfrac{8-x}{2x-4}\)
\(=\dfrac{3}{x-2}+\dfrac{x-8}{2\left(x-2\right)}\)
\(=\dfrac{6+x-8}{2\left(x-2\right)}=\dfrac{x-2}{2\left(x-2\right)}=\dfrac{1}{2}\)
d: \(\dfrac{2x+9}{9-4x^2}-\dfrac{1}{2x+3}\)
\(=\dfrac{-2x-9}{\left(2x-3\right)\left(2x+3\right)}-\dfrac{1}{2x+3}\)
\(=\dfrac{-2x-9-2x+3}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{-4x-6}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{-2}{2x-3}\)