K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3

Bài 2:

a) ĐKXĐ: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\9-x^2\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm3\)

b) \(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)

\(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)

\(A=\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}+\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4}{x-3}\) 

c) Thay `x=-1` vào A ta có:

\(A=\dfrac{4}{-1-3}=\dfrac{4}{-4}=-1\)

d) `A=-4` khi: \(\dfrac{4}{x-3}=-4\)

\(\Leftrightarrow x-3=-1\)

\(\Leftrightarrow x=2\left(tm\right)\)

Bài 1:

a: ĐKXĐ: x<>3

\(\dfrac{9}{x-3}+\dfrac{3x}{3-x}\)

\(=\dfrac{9}{x-3}-\dfrac{3x}{x-3}=\dfrac{9-3x}{x-3}\)

\(=\dfrac{-3\left(x-3\right)}{x-3}=-3\)

b: \(\dfrac{5}{x+5}+\dfrac{-4}{x+4}\)

\(=\dfrac{5\left(x+4\right)-4\left(x+5\right)}{\left(x+5\right)\left(x+4\right)}\)

\(=\dfrac{5x+20-4x-20}{\left(x+5\right)\left(x+4\right)}=\dfrac{x}{\left(x+5\right)\left(x+4\right)}\)

c: \(\dfrac{x+5}{2x-3}-\dfrac{2x-7}{3-2x}-\dfrac{x+4}{3-2x}\)

\(=\dfrac{x+5}{2x-3}+\dfrac{2x-7}{2x-3}+\dfrac{x+4}{2x-3}\)

\(=\dfrac{x+5+2x-7+x+4}{2x-3}\)

\(=\dfrac{4x+2}{2x-3}\)

d: \(\dfrac{x^2-y^2}{10x^3y}:\dfrac{x-y}{5xy}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{10x^3y}\cdot\dfrac{5xy}{x-y}\)

\(=\dfrac{x+y}{1}\cdot\dfrac{5xy}{10x^3y}\)

\(=\dfrac{x+y}{2x^2}\)

e: \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^3}\)

\(=\dfrac{2\left(x^2-10x+25\right)}{3\left(x+1\right)}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{4\left(x-5\right)^3}\)

\(=\dfrac{2\left(x-5\right)^2}{4\left(x-5\right)^3}\cdot\dfrac{x-1}{3}\)

\(=\dfrac{x-1}{3\cdot2\left(x-5\right)}=\dfrac{x-1}{6x-30}\)

f: \(\dfrac{x-2}{x+1}:\dfrac{x^2-5x+6}{x^2-2x-3}\)

\(=\dfrac{x-2}{x+1}:\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x-2}{x+1}\cdot\dfrac{\left(x+1\right)}{x-2}=1\)

g: \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)

\(=\dfrac{x}{x-2y}+\dfrac{x}{x+2y}-\dfrac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x}{x+2y}\)

h: \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\cdot\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

i: \(\left(\dfrac{2}{x+2}+\dfrac{2}{x-1}\right)\cdot\dfrac{x^2-4}{4x^2-1}\)

\(=\dfrac{2\left(x-1\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{2\left(2x+1\right)}{x-1}\cdot\dfrac{x+1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{2\left(x+1\right)}{\left(2x-1\right)\left(x-1\right)}\)

j: \(1+\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{1-x}-\dfrac{1}{1-x^2}\right)\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{-1}{x-1}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x-1+1}{\left(x-1\right)\left(x+1\right)}\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x}{\left(x-1\right)\left(x+1\right)}\)

\(=1-\dfrac{x^2}{x^2+1}=\dfrac{1}{x^2+1}\)

11 tháng 3 2021

1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)

\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)

\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)

\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))

\(\Leftrightarrow x=-36\).

Vậy nghiệm của pt là x = -36.

17 tháng 7

2) x(x+1)(x+2)(x+3)= 24

⇔ x.(x+3)  .   (x+2).(x+1)  = 24

⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24

Đặt \(x^2\)+ 3x = b

⇒ b . (b+2)= 24

Hay: \(b^2\) +2b = 24

\(b^2\) + 2b + 1 = 25

\(\left(b+1\right)^2\)= 25

+ Xét b+1 = 5 ⇒ b=4 ⇒  \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0

⇒(x-1)(x+4)=0⇒x=1 và x=-4

+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0

\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\)  Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)

⇒x= 1 và x= 4

a) Ta có: \(\dfrac{AE}{AB}=\dfrac{2}{5}\)

\(\dfrac{AF}{AC}=\dfrac{4}{10}=\dfrac{2}{5}\)

Do đó: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)\(\left(=\dfrac{2}{5}\right)\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{2}{5}=\dfrac{EF}{12}\)

hay EF=4,8(cm)

Vậy: EF=4,8cm

10 tháng 12 2020

x3 _ x2 _ 4x - 4 = 0

x mũ 2(x+1)- 4(x+1)=0

(x mũ 2 - 4) (x+1)=0

(x+2) (x-2) (x+1)  =0

suy ra (x+2)=0

            (x-2)=0

            (x+1)=0

vậy      x=-2

            x=2

            x= -1

good luck!

10 tháng 12 2020

Sửa đề : \(x^3-x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)

21 tháng 3 2021

$P=4a^2+4a(b-3)+b^2-6b+9+3b^2-6b+3$

$=4a^2+2.2a.(b-3)+(b-3)^2+3.(b-1)^2$

$=(2a+b-3)^2+3.(b-1)^2$

Mà $(2a+b-3)^2 \geq 0;3.(b-1)^2 \geq 0$ với mọi $a;b$

Nên $P=(2a+b-3)^2+3.(b-1)^2 \geq 0$

Dấu $=$ xảy ra $⇔(2a+b-3)^2=0;3.(b-1)^2=0⇔2a+b-3=0;b=1⇔a=1;b=1$

Vậy $MinP=0$ tại $a=b=1$

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

2 tháng 4 2021

a) (Bạn tự vẽ hình ạ)

Ta có AD.AB = AE.AC

⇒ \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta ABC\) và \(\Delta AED\) có:

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

\(\widehat{A}:chung\)

⇒ \(\Delta ABC\sim\Delta AED\)   \(\left(c.g.c\right)\)

⇒ DE // BC

2 tháng 4 2021

b) 

A B C M N

a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔAHB∼ΔDAB(g-g)

mik chỉ cần mng lm phần C thui ạ

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Vận tốc trung bình đi từ A đến B là:

$\frac{20+30}{2}=25$ (km/h)

 

18 tháng 12 2023

                 Kiến thức cần nhớ:

Vận tốc trung bình bằng tổng quãng đường chia cho tổng thời gian đi hết quãng đường đó!

Công thức Vtb =  \(\dfrac{S_1+S_2+...+S_n}{t_1+t_2+...+t_n}\)

           Giải chi tiết:

   Gọi quãng đường AB là: S  (km); S > 0 

Thời gian người đó đi hết nửa quãng đường đầu là:

       \(\dfrac{S}{2}\) : 20 = \(\dfrac{S}{40}\) (giờ) 

Thời gian người đó đi hết nửa quãng đường sau là:

        \(\dfrac{S}{2}\) : 30 = \(\dfrac{S}{60}\) (giờ)

Vận tốc trung bình của người đó đi từ A đến B là:

 Áp dụng công thức Vtb  = \(\dfrac{S_1+S_2}{t_1+t_2}\) ta có

Vtb = \(\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{60}}\)

 Vtb   =   \(\dfrac{S}{S.\left(\dfrac{1}{40}+\dfrac{1}{60}\right)}\) 

Vtb = \(\dfrac{1}{\dfrac{1}{24}}\)

Vtb = 24 (km/h)