Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Cho bất phương trình x2-6x +2(m+2)|x-3| +m2 +4m +12 >0có bao nhiêu giá trị nguyên của m ϵ [-10;10] để bất phương tình... - Hoc24
Câu a bạn coi lại đề
b. ĐKXĐ: \(x\ge0;x\ne1\)
\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)
\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)
\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)
\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )
\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)
\(\Leftrightarrow20x^2+16x-1=0\)
\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)
\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}=\dfrac{a}{bc}\)
\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{a}{bc}\)
\(\Leftrightarrow a^2+b^2+c^2=2a^2\)
\(\Leftrightarrow a^2=b^2+c^2\)
\(\Rightarrow\) Tam giác vuông tại A theo Pitago đảo
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-x^2y-7\left(x-y\right)=x^2+y^2+2xy+4\\3x^2+y^2-8\left(x-y\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-7\right)\left(x-y\right)-x^2-2xy=y^2+4\\3x^2-8\left(x-y\right)=-y^2-4\end{matrix}\right.\)
Cộng vế:
\(\left(x^2-7\right)\left(x-y\right)-8\left(x-y\right)+2x^2-2xy=0\)
\(\Leftrightarrow\left(x^2-15\right)\left(x-y\right)+2x\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2x-15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x^2+2x-15=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(f\left(x\right)=\left(m+1\right)x^2+mx+m\)
TH1: \(m+1=0\Leftrightarrow m=-1\Rightarrow f\left(x\right)>0,\forall x\in R\)
TH2: \(m+1\ne0\Leftrightarrow m\ne-1\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\Delta=-3m^2-4m< 0\\m+1< 0\end{matrix}\right.\Leftrightarrow m< -\frac{4}{3}\)
Đ/s: \(m< -\frac{4}{3};m=-1\)
Câu 2 :
\(\dfrac{sin^3\dfrac{B}{2}}{cos\left(\dfrac{A+C}{2}\right)}+\dfrac{cos^3\dfrac{B}{2}}{sin\left(\dfrac{A+C}{2}\right)}+\dfrac{cos\left(A+C\right)}{sinB}.tanB=2\) \(VT=\dfrac{sin^3\dfrac{B}{2}}{cos\left(\dfrac{180^o-B}{2}\right)}+\dfrac{cos^3\dfrac{B}{2}}{sin\left(\dfrac{180^o-B}{2}\right)}-\dfrac{cos\left(180^o-B\right)}{sinB}.tanB\)
\(\Leftrightarrow VT=\dfrac{sin^3\dfrac{B}{2}}{cos\left(90^o-\dfrac{B}{2}\right)}+\dfrac{cos^3\dfrac{B}{2}}{sin\left(90^o-\dfrac{B}{2}\right)}-\dfrac{\left(-cosB\right)}{sinB}.tanB\)
\(\Leftrightarrow VT=\dfrac{sin^3\dfrac{B}{2}}{sin\dfrac{B}{2}}+\dfrac{cos^3\dfrac{B}{2}}{cos\dfrac{B}{2}}+\dfrac{sinB}{sinB}\)
\(\Leftrightarrow VT=sin^2\dfrac{B}{2}+cos^2\dfrac{B}{2}+1\)
\(\Leftrightarrow VT=1+1=2=VP\)
\(\Rightarrow dpcm\)
Câu 3 :
a) \(A=sin\left(90^o-x\right)+cos\left(180^o-x\right)-sin^2x\left(1+tan^2x\right)-tan^2x\)
\(\)\(\Leftrightarrow A=cosx-cosx+\dfrac{sin^2x}{cos^2x}-tan^2x\)
\(\Leftrightarrow A=tan^2x-tan^2x=0\)
b) \(B=\dfrac{1}{sinx}\sqrt[]{\dfrac{1}{1+cosx}+\dfrac{1}{1-cosx}}-\sqrt[]{2}\)
\(\Leftrightarrow B=\dfrac{1}{sinx}\sqrt[]{\dfrac{1-cosx+1+cosx}{\left(1+cosx\right)\left(1-cosx\right)}}-\sqrt[]{2}\)
\(\Leftrightarrow B=\dfrac{1}{sinx}\sqrt[]{\dfrac{2}{\left(1-cos^2x\right)}}-\sqrt[]{2}\)
\(\Leftrightarrow B=\dfrac{1}{sinx}\sqrt[]{\dfrac{2}{sin^2x}}-\sqrt[]{2}\)
\(\Leftrightarrow B=\dfrac{1}{sinx}.\dfrac{\sqrt[]{2}}{\left|sinx\right|}-\sqrt[]{2}\)
- Với \(sinx>0\Leftrightarrow0< x< \pi\)
\(\Leftrightarrow B=\dfrac{1}{sinx}.\dfrac{\sqrt[]{2}}{sinx}-\sqrt[]{2}\)
\(\Leftrightarrow B=\dfrac{\sqrt[]{2}}{sin^2x}-\sqrt[]{2}\)
\(\Leftrightarrow B=\sqrt[]{2}\left(\dfrac{1}{sin^2x}-1\right)\)
\(\Leftrightarrow B=\sqrt[]{2}.cot^2x\)
- Với \(sinx< 0\Leftrightarrow\pi< x< 2\pi\)
\(\Leftrightarrow B=\dfrac{1}{sinx}.\dfrac{\sqrt[]{2}}{-sinx}-\sqrt[]{2}\)
\(\Leftrightarrow B=-\dfrac{\sqrt[]{2}}{sin^2x}-\sqrt[]{2}\)
\(\Leftrightarrow B=-\sqrt[]{2}\left(\dfrac{1}{sin^2x}+1\right)\)
\(\Leftrightarrow B=-\sqrt[]{2}.\left(2+cot^2x\right)\)