Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
\(2.\) \(x^2+3y^2+2xy-10x-14y+10=0\\\)
\(\Leftrightarrow x^2+2xy+y^2+2y^2-10x-14y+10=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).5+25+2y^2-4y+2=17\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=17\)
\(\Leftrightarrow-\sqrt{17}\le x+y-5\le\sqrt{17}\Leftrightarrow5-\sqrt{17}\le x+y\le5+\sqrt{15}\)
\(3;\) \(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\Leftrightarrow\left(x+y+z\right)^2+\left(x-z\right)^2+\left(x-y^2\right)=2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
\(1;\) \(P=x+y+1\Rightarrow x=P-y-1\)
\(\Rightarrow\left(P-y-1\right)^2+3y^2+2y\left(P-y-1\right)+7\left(P-y-1+y\right)+2y^2+10=0\)
\(\Leftrightarrow\left(P-y-1\right)^2+3y^2+2yP-2y+7P-7+10=0\)
\(\Leftrightarrow P^2+4y^2+2y\left(P-1\right)+7P+4=0\)
\(\Delta'=\left(P-1\right)^2-4\left(P^2+7P+4\right)\ge0\)
\(\Leftrightarrow-3P^2-30P-15\ge0\Leftrightarrow-5-2\sqrt{5}\le P\le5+2\sqrt{5}\)
\(\Rightarrow-5-2\sqrt{5}\le x+y+1\le5+2\sqrt{5}\)