loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2022

\(2.\) \(x^2+3y^2+2xy-10x-14y+10=0\\\)

\(\Leftrightarrow x^2+2xy+y^2+2y^2-10x-14y+10=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).5+25+2y^2-4y+2=17\)

\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=17\)

\(\Leftrightarrow-\sqrt{17}\le x+y-5\le\sqrt{17}\Leftrightarrow5-\sqrt{17}\le x+y\le5+\sqrt{15}\)

\(3;\) \(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\Leftrightarrow\left(x+y+z\right)^2+\left(x-z\right)^2+\left(x-y^2\right)=2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

\(1;\) \(P=x+y+1\Rightarrow x=P-y-1\)

\(\Rightarrow\left(P-y-1\right)^2+3y^2+2y\left(P-y-1\right)+7\left(P-y-1+y\right)+2y^2+10=0\)

\(\Leftrightarrow\left(P-y-1\right)^2+3y^2+2yP-2y+7P-7+10=0\)

\(\Leftrightarrow P^2+4y^2+2y\left(P-1\right)+7P+4=0\)

\(\Delta'=\left(P-1\right)^2-4\left(P^2+7P+4\right)\ge0\)

\(\Leftrightarrow-3P^2-30P-15\ge0\Leftrightarrow-5-2\sqrt{5}\le P\le5+2\sqrt{5}\)

\(\Rightarrow-5-2\sqrt{5}\le x+y+1\le5+2\sqrt{5}\)

 

 

NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

NV
16 tháng 1 2024

ĐKXĐ: \(\left|x-2\right|-1\ne0\)

\(\Rightarrow\left|x-2\right|\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)