">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2022

\(\sin\widehat{B}=\dfrac{AC}{BC}\Rightarrow BC=\dfrac{AC}{\sin\widehat{B}}=\dfrac{4}{\sin42^o}\)

\(AC^2=CH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow CH=\dfrac{AC^2}{BC}=4.\sin42^o\)

Xét tg vuông AHC có

\(x=AH=\sqrt{AC^2-CH^2}\) (Pitago)

\(\Rightarrow x=\sqrt{16-16\sin^242^o}=4\sqrt{1-\sin^242}=4\sqrt{\cos^242^o}=4\cos42^o\)

1) Cho  ABC có: \(\widehat{A}\)=60*; \(\widehat{B}\)=70*. Trên AB lấy điểm D sao cho AC+AD=BD+CD. Tính \(\widehat{ACD}\)2) Cho ABC nhọn: AB<AC. Các đường cao AD,BE,CF cắt tại H. Gọi M,N lần lượt là chân đường vuông góc hạ từ H xuống DE,EF, MN cắt AH tại K. Chứng minh: \(S_{DEF}=2S_{DEK}\)3) Cho ABC có: đường cao AD;DE vuông góc với AB tại E.;DF vuống góc với AC tại F. CMR: Nếu BE=CF thì ABC cân4) ChoABC có:...
Đọc tiếp

1) Cho  ABC có: \(\widehat{A}\)=60*; \(\widehat{B}\)=70*. Trên AB lấy điểm D sao cho AC+AD=BD+CD. Tính \(\widehat{ACD}\)

2) Cho ABC nhọn: AB<AC. Các đường cao AD,BE,CF cắt tại H. Gọi M,N lần lượt là chân đường vuông góc hạ từ H xuống DE,EF, MN cắt AH tại K. Chứng minh\(S_{DEF}=2S_{DEK}\)

3) Cho ABC có: đường cao AD;DE vuông góc với AB tại E.;DF vuống góc với AC tại F. CMR: Nếu BE=CF thì ABC cân

4) ChoABC có: số đo của các  \(\widehat{A}\),\(\widehat{B}\),\(\widehat{C}\)tỉ lệ với 0,8:0,5:0,5. D nằm trong ABC, \(\widehat{ABD}\)=40*; \(\widehat{ACD}\)=30*. Tính \(\widehat{ADB}\)

5) Cho ABC nhọn có: \(\widehat{A}\)=60*. Trên các cạnh AC,AB lần lượt lấy M,N sao cho \(\widehat{MBC}=\widehat{NCB}\)=30*. CMR

\(BN=MN=MC\ge\frac{1}{2}BC\)

6) Cho ABC vuông cân tại A có 2 đường trung tuyến BM, CN. P là hình chiếu của M trên CN. CM\(2BP^2=BC^2\)

0
20 tháng 5 2022

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}\Rightarrow\dfrac{BH}{30}=\dfrac{5}{6}\Rightarrow BH=25\)

Ta có

\(AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{30^2}{25}=36\)

=> x=25; y=36

8 tháng 5 2022

Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.

8 tháng 5 2022

Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.

12 tháng 5 2017

Giải:

a) \(\Delta ALC\) vuông tại \(L\) ta có:

\(\cos A=\dfrac{AL}{AC}\left(1\right)\)

\(\Delta ANB\) vuông tại \(N\) ta có:

\(\cos A=\dfrac{AN}{AB}\left(2\right)\) Hay \(AN=AB.\cos A\left(3\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{AL}{AC}=\dfrac{AN}{AB}\\\text{A: chung}\end{matrix}\right.\)

\(\Rightarrow\Delta ANL\) đồng dạng với \(\Delta ABC\left(c-g-c\right)\) (Đpcm)

b) \(\Delta BLC\) vuông tại \(L\) ta có:

\(BL=BC.\cos B\left(4\right)\)

\(\Delta AMC\) vuông tại \(M\) ta có:

\(CM=AC.\cos C\left(5\right)\)

Từ \(\left(3\right);\left(4\right)\)\(\left(5\right)\) suy ra:

\(AN.BL.CM=AB.\cos A.BC.\cos B.CA.\cos C\)

Hay \(AN.BL.CM=AB.BC.CA.\cos A.\cos B.\cos C\) (Đpcm)

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông

Bạn ghi lại đề đi bạn

Bài 1: 

a: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}}\)

b: Để \(P=\dfrac{-3}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{3}{2}\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+2\)

hay x=4

Bài 2: 

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(\dfrac{BC}{\cot B+\cot C}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=AH\)(đpcm)