Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
Answer:
Bài 1:
\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{15\left(x+y\right)}{5y}=\frac{5\left(3x^2+3xy\right)}{5y}=\frac{3x^2+3xy}{y}\)
\(\frac{5\left(x-y\right)-3x\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3x\left(x-y\right)}{10\left(x-y\right)}=\frac{5+3x}{10}\)
\(\frac{x^2-xy}{3xy-3y^2}=\frac{x\left(x-y\right)}{3y\left(x-y\right)}=\frac{x}{3y}\)
\(\frac{x^2+4y^2-4xy-4}{2x^2-4xy+4x}=\frac{\left(x-2y\right)^2-4}{2x\left(x-2y+2\right)}=\frac{x-2y-2}{2x}\)
\(\frac{5x^2+10xy+5y^2}{3x^3+3y^3}\left(x\ne-y\right)=\frac{5\left(x+y\right)^2}{3\left(x+y\right)\left(x^2+xy+y^2\right)}=\frac{5x+5y}{3x^2+3xy+3y^2}\)
\(\frac{-15\left(x-y\right)}{3\left(y-x\right)}=\frac{15x\left(y-x\right)}{3\left(y-x\right)}=5x\)
Bài 2:
\(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{\left(x+1\right)x}{2x\left(x+3\right)}+\frac{\left(2x+3\right).2}{2x\left(x+3\right)}\)
\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+3x+2x+6}{2x\left(x+3\right)}\)
\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\frac{x+2}{2x}\)
\(\frac{x+y}{2\left(x-y\right)}-\frac{x-y}{2\left(x+y\right)}+\frac{2y^2}{x^2-y^2}\)
\(=\frac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}-\frac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}+\frac{4y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\frac{4xy+4y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\frac{2y}{x-y}\)
\(\frac{3}{2x^2y}+\frac{5}{xy^2}+\frac{x}{y^3}\)
\(=\frac{3y^2}{2x^2y.y^2}+\frac{5.2xy}{xy^22xy}+\frac{x.2x^2}{y^32x^2}\)
\(=\frac{3y^2}{2x^2y^3}+\frac{10xy}{2x^2y^3}+\frac{2x^3}{2x^2y^3}\)
\(=\frac{3y^2+10xy+2x^3}{2x^2y^3}\)