A=3 + 3^2 + 3^3 + 3^4+... 3^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000

\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(=3\left(\frac{1}{\frac{1\cdot2}{2}}+\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+...+\frac{1}{\frac{100\cdot101}{2}}\right)\)
\(=3\left(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+...+\frac{2}{100\cdot101}\right)\)
\(=6\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\right)\)
\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6\left(1-\frac{1}{101}\right)=6-\frac{6}{101}=\frac{606-6}{101}=\frac{600}{101}\)

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(A=\frac{3^2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\cdot\left(1-\frac{1}{100}\right)\)
\(A=3\cdot\frac{99}{100}=\frac{297}{100}\)
Vậy \(A=\frac{297}{100}\)

Ta có:
\(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=> \(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
=> \(A+3A=1-\frac{1}{3^{100}}\)
=> \(4A=\frac{3^{100}-1}{3^{100}}\)
=> \(A=\frac{3^{100}-1}{4.3^{100}}\)

3A=3.(1/3-1/3^2+1/3^3-...+1/3^99-1/3^100)
3A+A=(1-1/3+1/3^2+1/3^3-...+1/3^98-1/3^99)+(1/3-1/3^2+1/3^3-...+1/3^99-1/3^100)
4A= 1-1/3+1/3^2+1/3^3-...+1/3^98-1/3^99+1/3-1/3^2+1/3^3-...+1/3^99-1/3^100
4A=1-1/3^100
A=(1-1/3^100):4
chọn câu trả lời nha
\(A=3+3^2+3^3+\cdots+3^{100}\)
=>\(3A=3^2+3^3+3^4+\cdots+3^{101}\)
=>\(3A-A=3^2+3^3+\cdots+3^{101}-3-3^2-3^3-\cdots-3^{100}\)
=>\(2A=3^{101}-3\)
=>\(A=\frac{3^{101}-3}{2}\)
A=3+3^2+3^3+3^4+...+3^100
3A=3^2+3^3+3^4+3^5+...+3^101
3A-A=(3^2+3^3+3^4+3^5+...+3^101)-(3+3^2+3^3+3^4+...+3^100)
2A=3^101-3
A=(3^101-3):2