1/ xn = 1 ( n thuộc N*)
2/ xn = 0 ( n thuộc N*)
3/ xn = 1 ( n thuộc N )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Với n = 1 thì A = 1 = 1\(^2\) (thỏa mãn)
Nếu n = 2 thì A = 1 + 1.2 = 3(loại) vì số chính phương không thể có tận cùng bằng 3
Nếu n = 3 thì A = 1 +1.2 + 1.2.3 = 1+2+2.3 = 1+2+6 = 3+6 =9=3\(^2\)
Nhận.
Nếu n = 4 Thì A = 1+1.2 + 1.2.3 + 1.2.3.4
A = 1 + 2 + 2.3 + 2.3.4
A = 1 + 2 + 6 + 6.4
A = 1 + 2 + 6 + 24
A = 3 + 6 + 24
A = 9 + 24
A = 33 (loại vì số chính phương không thể có tận cùng là 3)
Nếu n ≥ 5 thì A = 1+1.2+1.2.3+1.2.3.4 + 1.2.3.4.5 + ...+ 1.2.3.4.5.n
A = 33 + 1.2.3.4.5+ ...+ 1.2.3.4.5...n
A = 3 + 5.6 + 1.2.3.4.5 + ..+ 1.2.3.4.5...n
A : 5 dư 3 (loại vì số chính phương chia 5 chỉ có thể dư 0,1 hoặc 4)
Vậy n = 1; n = 3 là hai giá trị thỏa mãn đề bài
3^2.3^n=3^5
=> n=3
(2^2:4).n^2=4
=> n= +2;-2
1/9.3^4.3^n=3^7
=>n=9
1/9=27^n=3^n
=> n=
1/2.2n+4.2^n=9.5^n
=> n ∈ ∅
Giải:
Với n = 1 thì A = 1 = 1\(^2\) (thỏa mãn)
Nếu n = 2 thì A = 1 + 1.2 = 3(loại) vì số chính phương không thể có tận cùng bằng 3
Nếu n = 3 thì A = 1 +1.2 + 1.2.3 = 1+2+2.3 = 1+2+6 = 3+6 =9=3\(^2\)
Nhận.
Nếu n = 4 Thì A = 1+1.2 + 1.2.3 + 1.2.3.4
A = 1 + 2 + 2.3 + 2.3.4
A = 1 + 2 + 6 + 6.4
A = 1 + 2 + 6 + 24
A = 3 + 6 + 24
A = 9 + 24
A = 33 (loại vì số chính phương không thể có tận cùng là 3)
Nếu n ≥ 5 thì A = 1+1.2+1.2.3+1.2.3.4 + 1.2.3.4.5 + ...+ 1.2.3.4.5.n
A = 33 + 1.2.3.4.5+ ...+ 1.2.3.4.5...n
A = 3 + 5.6 + 1.2.3.4.5 + ..+ 1.2.3.4.5...n
A : 5 dư 3 (loại vì số chính phương chia 5 chỉ có thể dư 0,1 hoặc 4)
Vậy n = 1; n = 3 là hai giá trị thỏa mãn đề bài
Chọn A.
Ta có:
Do đó:
- Ta chứng minh dãy (yn) tăng.
Ta có:
- Ta chứng minh dãy (yn) bị chặn.
Trước hết ta chứng minh: xn ≤ 4(n – 1) (1)
* Với n = 2, ta có: x2 = 4x1 = 4 nên (1) đúng với n = 2
* Giả sử (1) đúng với n, tức là: xn ≤ 4(n – 1), ta có
Nên (1) đúng với n + 1. Theo nguyên lí quy nạp ta suy ra (1) đúng
Ta có:
Vậy bài toán được chứng minh.
\(=-x^2y^3\cdot2x^{n-2}y^n+x^2y^3\cdot3x^ny^{n-3}-x^2y^3\cdot x^{n-2}y^{n-3}\)
\(=-2x^ny^{n+3}+3x^{n+2}y^n-x^ny^n\)
a, Với n = 0 => x 0 = 1 ⇒ ∀ x ∈ N
Với n ≠ 0 => x n = 1 ⇒ x = 1
b, x n = 0 => x = 0
x= 1
x= rỗng
x= 1
1)
Với n chẵn : x=1 hoặc x=-1
Với n lẻ: x=1