Tìm GTLN:
\(\frac{5x^2+20x+31^{ }}{x^2+4x+6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)
\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)
\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)
Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:
\(E=5x.0+105=105\)
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
\frac{23}{\sqrt{31+12\sqrt{3}}} x = \frac{23}{\sqrt{(3\sqrt{3}+2)^2}} x = \frac{23}{3\sqrt{3}+2} x = \frac{23(3\sqrt{3}-2)}{(3\sqrt{3}+2)(3\sqrt{3}-2)} x = \frac{23(3\sqrt{3}-2)}{27-4} x = \frac{23(3\sqrt{3}-2)}{23} x = 3\sqrt{3}-2 (x+2)^2 = (3\sqrt{3})^2 x^2+4x+4 = 27 x^2+4x-23 = 0 P = \frac{x^4+5x^3-20x^2-27x+30}{x^2+4x-21} x^2+4x-21 = x^2+4x-23+2 = 0+2 = 2 x^4+5x^3-20x^2-27x+30 = x^2(x^2+4x-23) + x(x^2+4x-23) - (x^2+4x-23) + 7 = x^2(0) + x(0) - (0) + 7 = 7 P = \frac{7}{2}
\($$ x = \frac{23}{\sqrt{31+12\sqrt{3}}} \\ x = \frac{23}{\sqrt{(3\sqrt{3}+2)^2}} \\ x = \frac{23}{3\sqrt{3}+2} \\ x = \frac{23(3\sqrt{3}-2)}{(3\sqrt{3}+2)(3\sqrt{3}-2)} \\ x = \frac{23(3\sqrt{3}-2)}{27-4} \\ x = \frac{23(3\sqrt{3}-2)}{23} \\ x = 3\sqrt{3}-2 \\ \\ (x+2)^2 = (3\sqrt{3})^2 \\ x^2+4x+4 = 27 \\ x^2+4x-23 = 0 \\ \\ P = \frac{x^4+5x^3-20x^2-27x+30}{x^2+4x-21} \\ \\ x^2+4x-21 = (x^2+4x-23)+2 = 0+2 = 2 \\ \\ x^4+5x^3-20x^2-27x+30 = x^2(x^2+4x-23) + x(x^2+4x-23) - (x^2+4x-23) + 7 \\ = x^2(0) + x(0) - (0) + 7 \\ = 7 \\ \\ P = \frac{7}{2} $$ \)
Ta cóa : \(20x^6-\left(8-40y\right)x^3+25y^2-5\)
\(=20x^6-8x^3+40x^3y+25y^2-5\)
\(=16x^6+40x^3y+25y^2+4x^6-8x^3+4-9\)
\(=\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\)
Ta thấy ngay \(\left(4x^3+5y\right)^2\ge0;4\left(x^3-1\right)^2\ge0\)
\(\Rightarrow\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\ge-9\)
\(\Rightarrow M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\le\frac{6}{-9}=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}4x^3+5y=0\\x^3-1=0\end{cases}\Leftrightarrow x=1;y=-\frac{4}{5}}\)