K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

\(5x^2-4xy+y^2-4x+4=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)

Do \(\left(2x-y\right)^2,\left(x-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

\(A=\left(x-1\right)^3+\left(y+2\right)^3=\left(2-1\right)^3+\left(4+2\right)^3\)

\(=1+6^3=217\)

12 tháng 10 2021

MẤY BẠN GIÚP MK VS Ạ AI NHANH MK VOTE NHA

NV
29 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

Nhân vế:

\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)

Thế vào \(y^2=5x^2+4...\)

NV
29 tháng 7 2021

b. Đề bài không hợp lý ở \(4x^2\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

Trừ vế:

\(x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\)

\(\Leftrightarrow y=x-3\)

Thế vào \(x^2=2y^2=x-4y\) ...

NV
28 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

\(\Rightarrow-4\left(x^3-y^3\right)=\left(5x^2-y^2\right)\left(16x-4y\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{7x}{4}\\y=-3x\end{matrix}\right.\)

Lần lượt thế vào \(y^2=5x^2+4\)...

b. Đề bài bất hợp lý, \(4x^2+y^4\) cần là \(4x^4+y^4\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

a: \(4x^3-36x\)

\(=4x\cdot x^2-4x\cdot9\)

\(=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)\)

b:Sửa đề: \(4x^3-y^3+4x^2y-xy^2\)

\(=4x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(4x^2-y^2\right)=\left(x+y\right)\left(2x-y\right)\left(2x+y\right)\)

c: \(a^2+2ab-5a-10b\)

=a(a+2b)-5(a+2b)

=(a+2b)(a-5)

d: \(\left(x+1\right)^3-27\)

\(=\left(x+1\right)^3-3^3\)

\(=\left(x+1-3\right)\left\lbrack\left(x+1\right)^2+3\left(x+1\right)+3^2\right\rbrack\)

\(=\left(x-2\right)\left(x^2+2x+1+3x+3+9\right)\)

\(=\left(x-2\right)\left(x^2-5x+13\right)\)

e: \(4xy^2-4x^2y-y^3\)

\(=y\cdot4xy-y\cdot4x^2-y\cdot y^2\)

\(=-y\left(4x^2-4xy+y^2\right)=-y\left(2x-y\right)^2\)

f: \(\left(5x-y\right)^2-\left(x-2y\right)^2\)

=(5x-y-x+2y)(5x-y+x-2y)

=(4x+y)(6x-3y)

=3(2x-y)(4x+y)

g: \(x^3+2x^2+x-16xy^2\)

\(=x\left(x^2+2x+1-16y^2\right)\)

\(=x\left\lbrack\left(x+1\right)^2-\left(4y\right)^2\right\rbrack\)

=x(x+1-4y)(x+1+4y)

1 tháng 11 2023

(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0

⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0

*) (x + 20)⁴ = 0

x + 20 = 0

x = 0 - 20

x = -20

*) (2y - 1)²⁰²⁴ = 0

2y - 1 = 0

2y = 1

y = 1/2

M = 5.(-20)².1/2 - 4.(-2).(1/2)²

= 1000 + 2

= 1002

1 tháng 11 2018

A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)

\(=8x^4y^2+4xy^4-28x^2y^3\)

B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)

\(=10x^4-5x^2-5x-4x^3+2x+2\)

\(=10x^4-5x^3-3x-4x^3+2\)

C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)

\(=\left(2x^2-3\right)\left(2x+3\right)^2\)

D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)

( Bài này áp dụng hằng đẳng thức là làm được ạ )

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu