cho tam giác ABC (AB<AC); đường cao AH . Gọi M , N,D là trung dểm của AB, AC, BC . Chứng minh
a) tứ giác MNBD là hình bình hành
b) H đối xứng vs A qua MN
c) tứ giác MNDH là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ΔAHM và ΔABH có : ∡AMH=∡AHB=90
∡AHM=∡ABH (cùng phụ với ∡BHM)⇒ΔAHM đồng dạng ΔABH
⇒AH/AB=AM/AH⇒AH²=AB.AM
b, chứng minh tương tự câu a:
ΔAHN đồng dạng ΔACH ⇒AH/AC=AN/AH
⇒AH²=AN.AC
⇒AB.AM=AC.AN=AH²
c, xét ΔAMN và ΔACB có : góc A chung
AM.AB=AN.AC⇒AM/AN=AC/AB
⇒ΔAMN đồng dạng ΔACB
HÌnh bạn tự vẽ.
Bổ đề: (định lý Ptô-lê-mê)
Trong một tứ giác nội tiếp ABCD, ta có:
AC . BD = AB . CD + BC . AD
Áp dụng bổ đề trên cho tứ giác nội tiếp IPAN, ta có IA.NP = IP.AN + IN.AP = 2r(p - a) (ở đây ta đặt BC = a, CA = b, AB = c) và
\(p=\frac{a+b+c}{2}\) thì AN = AP = p - a.
Tương tự IB . PM = 2r(p - b)
IC . MN = 2r(p - c)
Nhân theo vế ba đẳng thức trên ta được:
\(IA.IB.IC.MN.NP.PM=8r^3\left(p-a\right)\left(p-b\right)\left(p-c\right)\).
Mặt khác, vì r là bán kính đường tròn ngoại tiếp \(\Delta MNP\)nên MN.NP.PM = \(4rS_{MNP}\).
Ngoài ra theo công thức Hê-rông ta có:
\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\).Do đó:
IA . IB . IC. 4rSMNP = \(\frac{8r^3.S^2_{ABC}}{p}=8r^4S_{ABC}\)(vì SABC = pr), suy ra đpcm
P/s: Chỗ nào không hiểu thì bạn chỉ việc vẽ hình ra và quan sát hình là được :))
a. Xét ΔAMB và ΔAMC có
AM chung
MB=MC ( do M là trung điểm BC )
AB=AC
⇒ ΔAMB = ΔAMC (ccc)
b. Xét ΔABC có AB=AC
⇒ ΔABC cân AMà M là trung điểm BC
⇒AM là đường trung tuyến
⇒ AM đồng thời là đường phân giác
⇒ ∠BAM=∠CAM
Mà ME//AC ⇒ ∠EMA=∠CAM ( so le trong )
⇒∠BAM=∠EMA
c. Do ΔABC cân A và AE=AF
⇒EB=FC và ∠EBM=∠FCM
Xét ΔEBM và ΔFCM có
BM=MC
EB=FC
∠EBM=∠FCM
⇒ ΔEBM = ΔFCM (cgc)
1) Ta có hình vẽ sau:
A B C D 1 2 1 2
Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)
AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)
Xét ΔABC và ΔCDA có:
\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)
AC: Cạnh chung
\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)
\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)
2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)
\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)
3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!
Ta có hình vẽ sau:
A B C F E 1 2
Xét ΔABC và ΔAFE có:
AE = AB (gt)
\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)
AF = AC (gt)
\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)
Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha
a: Xét ΔABC và ΔAED có
AB=AE
góc A chung
AC=AD
Do đó: ΔABC=ΔAED
b: Xét ΔABC và ΔAFB có
AB/AF=AC/AB
góc A chung
Do đó: ΔABC đồng dạng với ΔAFB
Suy ra: AB/AF=AC/AB
hay \(AB^2=AC\cdot AF\)
mình thật sự rất cần mong các bạn giúp đỡ
mk chưa hc hình bình hành
nên xin lỗi nhìu nha