K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
29 tháng 7 2023

Gọi góc ngoài đỉnh C là \(\widehat{C}'\) 

Ta có: \(\widehat{C}+\widehat{C}'=180^o\)

\(\Rightarrow\widehat{C}=180^o-\widehat{C}'=180^o-102^o=78^o\) 

Tổng của bốn góc trong tứ giác là:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Rightarrow\widehat{D}=360^o-\left(\widehat{A}+\widehat{B}+\widehat{C}\right)\)

\(\Rightarrow\widehat{D}=360^o-\left(78^o+115^o+78^o\right)\)

\(\Rightarrow\widehat{D}=89^o\)

góc C=180-102=78 độ

góc D=360 độ-78 độ-115 độ-78 độ=89 độ

góc C-góc D=200-180=20 độ

góc C+góc D=120 độ

=>góc C=(20+120)/2=70 độ và góc D=120-70=50 độ

góc B=200-70=130 độ

góc A=180-70=110 độ

28 tháng 6 2017

Vẽ \(BM⊥AD\)tại M và \(BN⊥CD\)tại N
Dễ thấy \(\Delta MAB=\Delta NCB\)( cạnh huyền - góc nhọn )
\(\Rightarrow\)BM = BN , \(\widehat{MAB}=\widehat{BCN}\)
\(\Rightarrow\) BD là tia phân giác của góc ABC

Xét \(\Delta ABD\) cân tại A  \(\Rightarrow\)\(\widehat{ABD}=\widehat{ADB}\)
ta có: \(\widehat{ABD}=\widehat{BDC}\)\(\Rightarrow\) AB // CD

Xét tứ giác ABCD có:    AB // CD  và  \(\widehat{ADC}=\widehat{BCD}\left(=\widehat{MAB}\right)\)
nên là hình thang cân

28 tháng 6 2017

Tứ giác có 3 cạnh bằng nhau là hình thoi hoặc hình vuông

Hai hình này đều có tổng của 2 góc kề nhau bằng 180o

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

15 tháng 7 2018

A B C D M

Đây là hình với cả đã chứng minh được Cm là phân giác góc BCD,bn nào giúp mik với nhé ^^~

13 tháng 9

Tứ giác \(A B C D\)\(\hat{A} - \hat{B} = 50^{\circ}\). Các tia phân giác của \(\hat{C} , \hat{D}\) cắt nhau tại \(I\). Tính \(\hat{A} , \hat{B}\).

  • Gọi \(\hat{A} = a , \textrm{ }\textrm{ } \hat{B} = b , \textrm{ }\textrm{ } \hat{C} = c , \textrm{ }\textrm{ } \hat{D} = d\).
  • Ta có: \(a - b = 50^{\circ}\).
  • Trong tứ giác: \(a + b + c + d = 360^{\circ}\).
  • \(I\) là giao điểm phân giác \(\hat{C} , \hat{D}\) nên:
    \(\hat{C I D} = \frac{1}{2} \left(\right. c + d \left.\right)\).
  • \(\hat{C I D} = 90^{\circ} \Rightarrow c + d = 180^{\circ}\).
  • Thay vào: \(a + b = 180^{\circ}\).
  • Giải hệ:

a+b=180∘
a−b=50∘​  
⇒a=115∘,b=65∘.\(\)

Đáp số: \(\hat{A} = 115^{\circ} , \textrm{ }\textrm{ } \hat{B} = 65^{\circ}\).
xin tick. cảm ơnnn