Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) gọi Q(x) là thương khi chia f(x) cho g(x)
khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x) (1)
Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:
f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0
<=> \(-15+a=0\)
<=>a=15
Vậy vs a=15 thì f(x) chia hết cho g(x)

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888

f(-1)=1-a+b; f(0)=b; f(1)=1+a+b
theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)
cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)
từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0
vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)
+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)
+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)
\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)
+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)
+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)
+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
Vậy a=0, b=1/2
P/s: Bài này mình không chắc chắn lắm nhé!

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....

Bài 1:
Ta có: \(9(x-1)^2-4(2x+3)^2=(3x-3)^2-(4x+6)^2\)
\(=(3x-3-4x-6)(3x-3+4x+6)=-(x+9)(7x+3)\)
Bài 2:
Có: \(x^2-x+\frac{9}{20}=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{1}{5}=\left(x-\frac{1}{2}\right)^2+\frac{1}{5}\)
Ta thấy \(\left(x-\frac{1}{2}\right)^2\geq 0\forall x\in\mathbb{R}\Rightarrow x^2-x+\frac{9}{20}\geq \frac{1}{5}>0\forall x\in\mathbb{R}\)
Ta có đpcm.
Bài 3:
Thực hiện phân tích:
\(f(x)=x^3-8x^2+ax-5=x(x^2-3x+1)-5(x^2-3x+1)+ax-16x\)
\(=(x-5)(x^2-3x+1)+ax-16x\)
Thấy rằng bậc của \(ax-16x\) nhỏ hơn bậc của $g(x)$ nên $ax-16x$ là dư của $f(x)$ cho $g(x)$
Để \(f(x)\vdots g(x)\Rightarrow ax-16x=0\forall x\Rightarrow a=16\)
Bài 4:
Để \(\overline{2017x}\vdots 12\Leftrightarrow \left\{\begin{matrix} \overline{2017x}\vdots 3(1)\\ \overline{2017x}\vdots 4(2)\end{matrix}\right.\)
\((1)\Leftrightarrow 2+0+1+7+x\vdots 3\Leftrightarrow 10+x\vdots 3\Leftrightarrow x+1\vdots 3\)
\((2)\Leftrightarrow \overline{7x}\vdots 4\Rightarrow x\in\left\{2;6\right\}\)
Từ hai điều trên suy ra \(x=2\)
Bài 5:
Ta có: \(x+\frac{1}{x}=\sqrt{2017}\Rightarrow \left(x+\frac{1}{x}\right)^2=2017\Leftrightarrow x^2+\frac{1}{x^2}+2=2017\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=2015\)
Như vậy: \(A=3x^2-5+\frac{3}{x^2}=3\left(x^2+\frac{1}{x^2}\right)-5=3.2015-5=6040\)
Bài 6:
Đặt \(\left\{\begin{matrix} x+y+z=a\\ xy+yz+xz=b\end{matrix}\right.\). ĐKĐB tương đương với:
\(\left\{\begin{matrix} a^2-2b=3\\ a+b=6\rightarrow b=6-a\end{matrix}\right.\)
\(\Rightarrow a^2-2(6-a)=3\Leftrightarrow a^2-2a+15=0\Leftrightarrow (a+5)(a-3)=0\Leftrightarrow a=3\)
(do \(a\in\mathbb{R}^+\))
Kéo theo \(b=6-a=3\Rightarrow x^2+y^2+z^2=xy+yz+xz\)
Theo BĐT AM-GM thì \(x^2+y^2+z^2\geq xy+yz+xz\)
Dấu bằng xảy ra khi \(x=y=z\Rightarrow x=y=z=1\) do \(x+y+z=3\)

6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }