Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)

x+x+1+x+2+.........................+x+2003=2004
(x+x+x+...................+x)+(1+2+3+...................+2003)=2004
2004x+2007006=2004
2004x=2004:2007006=2/2003
x=2/2003:2004

\(x+\left(x+1\right)+\left(x+2\right)+....+\left(x+2003\right)=2004\)
\(\Leftrightarrow x+\left(x+x+....+x\right)+\left(1+2+....+2003\right)=2004\)
\(\Leftrightarrow x+2003x+2007006=2004\)
\(\Leftrightarrow2004x=2004-2007006\)
\(\Leftrightarrow2004x=-2005002\)
\(\Leftrightarrow x=-\frac{2001}{2}=-1000,5\)

a) |x - 1,7| = 2,3
Xét 2 trường hợp:
TH1: x - 1,7 = -2,3
x = -2,3 +1,7
x = -0,6
TH2: x - 1,7 = 2,3
x = 2,3 + 1,7
x = 4
Vậy: Tự kl :<

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

Ở bên trên, mình viết nhầm, đề bài là:
Cho P(x)=x^99-100x98+100x97-100x^96+...+100x-1. Tính P(99)
Mong mọi người giúp đỡ

câu 6 dễ mà câu 7
A=3-3/4+3/4-3/7+3/7-3/10+...+3/94-3/97+3/97-3/100
A=3-3/100
A=300/100-3/100
A=297/100
Câu 6:
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
=>\(\left(\frac{x+5}{2005}+1\right)+\left(\frac{x+6}{2004}+1\right)+\left(\frac{x+7}{2003}+1\right)=-3+3=0\)
=>\(\frac{x+2010}{2005}+\frac{x+2010}{2006}+\frac{x+2010}{2007}=0\)
=>x+2010=0
=>x=-2010
Câu 7:
\(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\cdots+\frac{3}{97\cdot100}\)
\(=1-\frac14+\frac14-\frac17+\cdots+\frac{1}{97}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
@@
đề kiểu j thế
sai đề hay sao ý