K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

Phương pháp:

Sử dụng lí thuyết về bài toán trùng nhau của 2 bức xạ trong giao thoa sóng ánh sáng

Hai bức xạ trùng nhau: x1 = x2 <=> k11 = k22

Cách giải:

Giữa hai vân trùng màu với vân trung tâm có 3 vân sáng màu cam, chứng tỏ rằng vị trí trùng nhau gần nhất của hai bức xạ ứng với vân sáng bậc 4 của bức xạ cam

+ Từ điều kiện trùng nhau của hai hệ vân ta có:

Chọn A

29 tháng 1 2015

Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)

\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)

\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)

Thay vào (1) \(x_T=5i_1=4i_2\)

Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)

Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ­2.     

Đáp án A.

18 tháng 1 2016

Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là 

\(d_2-d_1 = (k+0,5)\lambda.\)

Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)

 

29 tháng 1 2015

\(i_1 = \frac{\lambda_1D_1}{a}\)

\(i_2 = \frac{\lambda_2D_2}{a}\)

=> \(\frac{i_1}{i_2} = \frac{\lambda_1D_1}{\lambda_2D_2} \)

=> \(\frac{\lambda_1}{\lambda_2} = \frac{i_1D_2}{i_2D_1} = \frac{1.2}{3.1}= \frac{2}{3}\) (do \(i_2 = 3i_1; D_2 = 2D_1\))

=> \(\lambda_2 = \frac{3\lambda_1}{2} = \frac{3.0,4}{2} = 0,6 \mu m.\)

Chọn đáp án.A

28 tháng 1 2016


\(i = \frac{\lambda D}{a} =\frac{0,5. 1}{0,5}=1mm.\)

Số vân sáng trên trường giao thoa L là

\(N_s = 2.[\frac{L}{2i}]+1= 2.2.6+1 = 13.\)

Số vân tối trên trường giao thoa L là

\(N_t = 2.[\frac{L}{2i}+0,5]= 2.7 = 14.\)

5 tháng 1 2015

Khoảng cách giữa hai vân sáng cùng màu gần nhất với vân chính giữa là : x = k1 i1 = k2 i2 => k1λ1 = k2λ2

Nhận xét: k2 = 9 => k1.720 = 9 λ => λ= 80 k1.

Do λ2 có giá trị trong khoảng từ 500nm đến 575nm nên dễ thấy k1 = 7

=> λ560 nm.

Đáp án D

22 tháng 10 2016

ĐÁp án D

3 tháng 3 2019

Đáp án: A

+ Điều kiện vân sáng của λ1 trùng với vân sáng của λ2:

 k2/k1 = λ12 = 0,42/0,56 = a/b = 3/4

+) Điều kiện vân sáng của λ1 trùng với vân sáng của λ3:

 k3/k1 = λ13 = 0,42/0,63 = c/d = 2/3

+) Điều kiện vân sáng của λ2 trùng với vân sáng của λ3:

 k3/k2 = λ23 = 0,56/0,63 = e/f = 8/9

Khoảng vân trùng i = b.d.λ1 = a.d.λ2 = b.c.λ3

hay i = 12λ1 = 9λ2 = 8λ3

Trong khoảng giữa hai vân sáng liên tiếp có màu giống màu vân trung tâm, có 2 vị trí vân sáng bức xạ 1 trùng với bức xạ 2, 3 vị trí vân sáng bức xạ 1 trùng với bức xạ 3.

=> Số vân sáng quan sát được là N = (12 – 1)+ (9 – 1) + (8 – 1) – (2 + 3)  = 21 vân

(2 vân sáng trùng nhau tính là 1)

26 tháng 1 2016

Bạn tham khảo một bài hoàn toàn tương tự như vậy nhé

Câu hỏi của trần thị phương thảo - Học và thi online với HOC24

 

28 tháng 8 2019

27 tháng 1 2015

o 1,2 1,2,3 x T

Khoảng cách giữa 2 vân gần nhất có màu giống vân trung tâm là \(x_{\equiv}\)

\(\Rightarrow x_{\equiv}=k_1i_1=k_2i_2=k_3i_3\)\(\Rightarrow k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)(1)

Ta có: \(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{5}{4}\)

Vì trong khoảng giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm chỉ có một vị trí trùng nhau của   các vân sáng ứng với hai bức xạ   λ1, λ2 nên: \(\begin{cases}k_1=5.2=10\\k_2=4.2=8\end{cases}\)

Thay vào (1) ta có: \(10\lambda_1=8\lambda_2=k_3\lambda_3\)

λcó màu đỏ nên λλ2

\(\Rightarrow k_3<8\)

\(\Rightarrow k_3=7;5;3\)

\(k_3=7\Rightarrow\lambda_3=\frac{8}{7}\lambda_2=\frac{8}{7}.0,5=0,57\)

\(k_3=5\Rightarrow\lambda_3=\frac{8}{5}\lambda_2=\frac{8}{5}.0,5=0,8\)loại, vì ngoài bức xạ màu đỏ.

Vậy \(\lambda_3=0,57\mu m\), không có đáp án nào thỏa mãn :))

28 tháng 1 2015

Ý này của bạn bị nhầm λcó màu đỏ nên λλ   

Sửa lại là: Vì \(\lambda_3\) có màu đỏ nên \(\lambda_3>\lambda_2\)