Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Dạng chuẩn của số π với 10 chữ số chắc là 3,141592654 với sai số tuyệt đối ∆π≤ 10-9.
b) Viết π ≈ 3,14 ta mắc phải sai số tuyệt đối không quá 0,002. Trong cách viết này có 3 chữ số đáng tin.
Viết π ≈ 3,1416 ta mắc phải sai số tuyệt đối không quá 10-4. Viết như vậy thì số π này có 5 chữ số đáng tin.

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.

a: A(x)=0
=>2x-6=0
hay x=3
b: B(x)=0
=>3x-6=0
hay x=2
c: M(x)=0
\(\Rightarrow x^2-3x+2=0\)
=>x=2 hoặc x=1
d: P(x)=0
=>(x+6)(x-1)=0
=>x=-6 hoặc x=1
e: Q(x)=0
=>x(x+1)=0
=>x=0 hoặc x=-1

a) Là một mệnh đề
b) Là một mệnh đề chứa biến
c) Không là mệnh đề, không là mệnh đề chứa biến
d) Là một mệnh đề

1.
Lấy \(x_1;x_2\in\left(-4;0\right)\)
Ta có: \(y_1-y_2=-2x^2_1-7-\left(-2x^2_2-7\right)=-2\left(x_1-x_2\right)\left(x_1+x_2\right)\)
Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)
Do \(x_1;x_2\in\left(-4;0\right)\Rightarrow-8< x_1+x_2< 0\Rightarrow I>0\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(-4;0\right)\)
Lấy \(x_1;x_2\in\left(3;10\right)\)
Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)
Do \(x_1;x_2\in\left(3;10\right)\Rightarrow6< x_1+x_2< 20\Rightarrow I< 0\)
\(\Rightarrow\) Hàm số nghịch biến trên \(\left(3;10\right)\)
2.
Hàm số \(y=mx^2+2x+1\left(P\right)\)
\(A\left(-1;3\right)\in\left(P\right)\Leftrightarrow3=m-2+1\Leftrightarrow m=4\)
Vậy \(m=4\)

1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
Vì độ chính xác đến hàng trăm ( d = 150 ) nên ta quy tròn a đến hàng nghìn. Vậy số quy tròn của a là 1 718 000.
Đáp án là A.