Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có A(xA,yA) thuộc (P) nên tọa độ điểm A là nghiệm của phương trình \(y=\frac{1}{2}x^2\Leftrightarrow y_A=\frac{1}{2}x_A^2\Leftrightarrow y_A=\frac{1}{2}.1^2=\frac{1}{2}\)
Vậy A(\(1;\frac{1}{2}\))
Ta có B(xB,yB) thuộc (P) nên tọa độ điểm B là nghiệm của phương trình \(y=\frac{1}{2}x^2\Leftrightarrow y_B=\frac{1}{2}x_B^2\Leftrightarrow y_B=\frac{1}{2}.2^2=2\)
Vậy B(2;2)
b) Gọi y=ax+b(a\(\ne0\)) là phương trình đường thẳng đi qua A,B suy ra tọa độ của A và B là nghiệm của phương trình \(y=ax+b\) hay ta có hệ phương trình \(\left\{{}\begin{matrix}\frac{1}{2}=a.1+b\\2=a.2+b\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=\frac{1}{2}\\2a+b=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=\frac{3}{2}\\b=-1\end{matrix}\right.\)
Vậy phương trình đường thẳng đi qua A,B là y=\(\frac{3}{2}\)x-1

Phương trình hoành độ giao điểm:
\(x^2=ax+b\Leftrightarrow x^2-ax-b=0\) (1)
Để (d) tiếp xúc (P) tại \(A\left(-1;1\right)\) thì \(\left\{{}\begin{matrix}\Delta=a^2+4b=0\\-\frac{\left(-a\right)}{2}=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\)
2/ ĐKXĐ: \(-2\le x\le3\)
Áp dụng BĐT Bunhicopxki cho vế trái:
\(2\sqrt{2+x}+1.\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(2+x+3-x\right)}=5\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{\sqrt{2+x}}{2}=\sqrt{3-x}\)
\(\Rightarrow2+x=4\left(3-x\right)\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất x=2

Gọi tất cả các pt đường thẳng có dạng \(y=ax+b\)
a/ Do đường thẳng cắt trục tung tại điểm có tung độ bằng 2 và đi qua B(2;-1) nên ta có:
\(\left\{{}\begin{matrix}2=0.a+b\\-1=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+2\)
b/ Do .... nên ta có:
\(\left\{{}\begin{matrix}3=0.a+b\\a=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{3}x+3\)
c/ Pt hoành độ giao điểm của 2 đường thẳng:
\(5x-3=-2x+4\Rightarrow7x=7\Rightarrow x=1\Rightarrow y=2\Rightarrow\left(1;2\right)\)
Do... nên: \(\left\{{}\begin{matrix}2=1.a+b\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{2}\\b=\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+\frac{7}{2}\)
d/ Do... nên:
\(\left\{{}\begin{matrix}-5=-2a+b\\4=1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Rightarrow y=3x+1\)
a) Gọi pt đường thẳng (d) đi qua 2 điểm A,B là : y= ax +b
Ta có A(-1,1), B(2,7) thuộc (d) ⇒ \(\left\{{}\begin{matrix}1=-1.a+b\\7=2.a+b\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
⇒ pt đi qua AB (d) là y=2x+3
b) Giả sử C(-2,-1) ∈ (d)
⇒ -1=-2.2 +3 ⇒ -1=-1( luôn đúng)
⇒ C(-2,-1) ∈(d) ⇒ A,B,C thẳng hàng