Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)

Câu 1:
a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(=a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow2\left(ab+bc+ac\right)=3\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow2\left(ab+bc+ac\right)=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow ab+bc+ac=a^2+b^2+c^2\)
\(\Rightarrow a=b=c\left(đpcm\right)\)

a) \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
=> ĐPCM
b) \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3a^2+3b^2+3c^2\)
\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow-\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
=> ĐPCM
c) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
=> ĐPCM

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có:
\(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\)
\(\ge\left(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\) \(\left(1\right)\)
Lại có: \(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\) ( Do abc=1 )
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=1\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\ge1\)
Mà \(a;b;c>0\Rightarrow a+b+c>0\)
\(\Rightarrow\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\) (đpcm)
Thế này nhé ^^
\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2\right)-bc-ac+c^2-3ab\right]\)
\(=\left[\left(a+b\right)+c\right].\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=a^3+b^3+c^3-3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)