
\(Q=\dfrac{a^3+b^3+c^3}{abc}\) với \(a...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. \(\frac{a+b-c}{a}=\frac{a-b+c}{b}=\frac{-a+b+c}{c}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}\) \(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a-a+a\right)-\left(c-c+c\right)+\left(b-b+b\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) \(\Leftrightarrow a=b=c\) \(\Rightarrow\)\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{3.2a}{a^3}=\frac{6a}{a^3}=\frac{6}{a^2}\) Bài 1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\) Khi đó: \(\left\{\begin{matrix}
\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\
\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\) \(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\) Ta có đpcm. Bài 2: Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\) Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\) \(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\) Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm. link đây tham khảo nhé: https://hoc24.vn/hoi-dap/question/207558.html a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\) Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 ) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1) VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2) Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\) hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d) 1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100 = 3x(3 + 32 + ... + 3100) = 3x[(3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ... + (397 398 + 399 + 3100)] = 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)] = 3x(120 + 34.120 + .... + 396.120) = 3x.120.(1 + 34 + .... + 396) => \(M⋮120\)(ĐPCM) 2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\) \(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\) \(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\) Nếu a + b + c = 0 => a + b = - c b + c = -a c + a = -b Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\) Nếu a + b + c \(\ne\)0 => \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\) Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\) Vậy nếu a + b + c = 0 thì P = -3 nếu a + b + c \(\ne\)0 thì P = 6 Ta có : \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\) \(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\) \(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\) \(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\) \(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\) Vì \(120⋮120\) \(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\) \(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\) Áp dụng t/c dãy tỉ số bằng nhau ta có: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\) \(\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\) Do \(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\) \(\Rightarrow2b+c-a+a=3a\) \(\Rightarrow2b+c=3a\Rightarrow3a-2b=c\) Lại do \(\dfrac{2c-b+a}{b}=2\) \(\Rightarrow2c-b+a=2b\) \(\Rightarrow2c+a-3b=0\) \(\Rightarrow3b-2c=a\) Ta lại có \(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\) \(\Rightarrow2a+b-c+c=3c\) \(\Rightarrow2a
+b=3c\) \(\Rightarrow3c-2a=b\) Khi đó: \(P=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\) (đoạn này mk làm hơi tắt, nếu không hiểu thì nói mk nhé!) Vậy \(P=\dfrac{1}{8}.\) Chú ý: Ở tử của p/s phải là 3a \(-2b\) mới làm được bài này.