
\(\left(2x+1-3^{-1}\right)^2=16\)
2, \...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. Câu b) tạm thời ko bít làm =.= Bài 1 : \(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\) \(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\) \(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\) \(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\) \(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\) \(\Leftrightarrow\)\(2^{12}=2x\) \(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\) \(\Leftrightarrow\)\(x=2^{11}\) \(\Leftrightarrow\)\(x=2048\) Vậy \(x=2048\) Chúc bạn học tốt ~ Bài 1 : \(a)\) Ta có : \(4+\frac{x}{7+y}=\frac{4}{7}\) \(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\) \(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\) \(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\) Do đó : \(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\) \(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\) Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\) Chúc bạn học tốt ~ a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\) \(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) => \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\) Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\) b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)= \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\) => \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=> \(\frac{27x}{4}=\frac{27}{40}\) \(27x.40=27.4\) \(1080.x=108\) \(x=\frac{1}{10}\) Vậy \(x=\frac{1}{10}\) c) \(\left|x-1\right|+4=6\) \(\left|x-1\right|=6-4\) \(\left|x-1\right|=2\) \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\) Vậy \(x=\left[3,-1\right]\) d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\) e) \(\left(x^2-3\right)^2=16\) \(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\) \(x^2=7=>x=\sqrt{7}\) Vậy \(x=\sqrt{7}\) f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\) \(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\) \(\frac{2}{5}x=-\frac{4}{15}\) \(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\) Vậy \(x=-\frac{2}{3}\) g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\) \(\left(-\frac{1}{27}\right).x=\frac{1}{81}\) \(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\) Vậy \(x=-3\) k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\) \(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\) \(\frac{2}{5}x=\frac{4}{15}\) \(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\) Vậy \(x=\frac{2}{15}\) I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\) \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\) \(\frac{3}{5}x=\frac{5}{14}\) \(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\) Vậy \(x=\frac{25}{42}\) a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\) \(=-2x^4y^3+4x^3y^4-10x^2y^5\) b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\) \(=-2x^4+6x^3+2x^2-2x\) c) Ta có: \(3x^2\left(2x^3-x+5\right)\) \(=6x^5-3x^3+15x^2\) d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\) \(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\) e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\) \(=-4x^3y^2+8x^2y^2-12x^2y\) f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\) \(=4x^3y^2+3x^2y^2-5x^3y\) 1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\) ⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\) ⇒ \(\frac{1}{3}x=\frac{11}{15}\) ⇒ \(x=\frac{11}{15}:\frac{1}{3}\) ⇒ \(x=\frac{11}{5}\) Vậy \(x=\frac{11}{5}.\) 2) \(2,5:7,5=x:\frac{3}{5}\) ⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\) ⇒ \(\frac{1}{3}=x:\frac{3}{5}\) ⇒ \(x=\frac{1}{3}.\frac{3}{5}\) ⇒ \(x=\frac{1}{5}\) Vậy \(x=\frac{1}{5}.\) 4) \(\left|x\right|+\left|x+2\right|=0\) Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\) ⇒ \(\left|x\right|+\left|x+2\right|=0\) ⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau. ⇒ \(x\in\varnothing\) Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài. 10) \(5-\left|1-2x\right|=3\) ⇒ \(\left|1-2x\right|=5-3\) ⇒ \(\left|1-2x\right|=2\) ⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\) Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\) Chúc bạn học tốt! 9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\) \(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\) \(10=26:\left(2x-1\right)\) \(2x-1=26:10\) \(2x-1=2,6\) \(2x=2,6+1\) \(2x=3,6\) \(x=3,6:2\) \(x=1,8\) a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\) \(\frac{1}{2}-x=\frac{57}{28}\) \(x=-\frac{43}{28}\) b, \(\left(2x-1\right)^2-5=20\) \(\Rightarrow\left(2x-1\right)^2=25\) \(\Rightarrow2x-1=\pm5\) \(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)